°
w SLOVENSKI STANDARD

SIST ES 202 781 V1.1.1:2013
01-marec-2013

Metode za preskusanje in specificiranje (MTS) - 3. razli¢ica preskusanja in zapisa
krmilnih preskusov - Razsiritev nabora jezikov TTCN-3: Podpora konfiguriranju in
uvajanju

Methods for Testing and Specification (MTS) - The Testing and Test Control Notation
version 3 - TTCN-3 Language Extensions: Configuration and Deployment Support

Ta slovenski standard je istoveten, z; ES 202 781 Version 1.1.1

ICS:

35.060 Jeziki, ki se uporabljajo v Languages used in
informacijski tehniki in information technology
tehnologiji

SIST ES 202 781 V1.1.1:2013 en

2003-01.Slovenski institut za standardizacijo. RazmnoZevanje celote ali delov tega standarda ni dovoljeno.

SIST ES 202 781 V1.1.1:2013

iTeh STANDARD PREVIEW
(standards.iteh.ai)

SIST ES 202 781 V1.1.12013
https/standards.iteh.ai/catalog/standards/sist/1 cac3a77-9712-4ef9-964a-
€67b95594e006/sist-es-202-781-v1-1-1-2013

ETSIES 202 781 vi.1.1 (201008

ETSI Standard

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions:

Configuration and Deployment Support

D

2 ETSI ES 202 781 V1.1.1 (2010-08)

Reference
DES/MTS-00112 T3EXT_CONFDEP

Keywords
conformance, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Saus-Préfectlre de Grasse (06) N°7803/88

Important,notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

3 ETSI ES 202 781 V1.1.1 (2010-08)

Contents

INtellectual Property RIGNES.... ..ottt bbb renn e 5
0 Yo (o SRS 5
1 o010 SR 6
2 REFEIBINCES ...ttt b ettt b e s e et et e st et R e e bt e bt s b e se e ae st e se e st e benbeebeneeneenteneas 6
21 NOIMBLIVE FEFEIENCES ... ceeeeerieete ettt sttt a et e e eestesbesaeebeesees e e e esebeseeebesaeeseeneenseneeseesbesaessesneeneensens 6
22 INfOrMEEIVE FEFEIENCES. ... ettt st sttt a e et et e st e st e besaesaeeneenseeeseesbesaeerenneeneeneens 6
3 Definitions and aDbrEVIBLIONS.........c.oieeeieeiese ettt ee e e stesre e e snesaeeneesneeneeseeenes 7
31 D= T aT] (0] PO SO PP PRUPTPRUSTOSOI 7
3.2 ADDIEVIBLIONS ...ttt b b h e h et e e e e e e bt e bt eheeh e et et SR e eb e e Rt e Rt e e e R e besheebenneeneennen 7
4 Package conformance and COMPEaLibDilitycccceeiiiiiieie e 7
5 Package Concepts for the COre LanQUEE.cceeerierierierierieiesee ettt snenne e 8
51 The special configuration type: CONFIGUIBLION...........ciireiriieirieiee st 9
5.2 The coNfigUIaion FUNCLIONeiiie ettt et e tees e ssaesaeenteeneesneesneesreenneenneenneans 9
5.3 Starting a static teSt CONFIGUIALIONccueeieiee et ae e s e sre e s reeaeeneeenteeneesnaesseesreas 10
54 Destruction of statiC test CONfIQUIALIONS...........eeiiieieiie e sttt e e e tesaeseeseesreesnneseenneens 11
55 Creation Of StatiC tESt COMPONENTS.........iiiiiiecie e se e e et e e e e et e e e teseeseesseesaeeseenseenseeseesneesseessens 11
5.6 Establishment of static connections and Static MaPPINGS.......cocvvieiieeiee s e eae e e e e eeesreeeees 12
5.7 Test case definitions for static test CONFIGUIALIONcccueiieiieieee e sreeneees 13
58 Executing test cases on static test configurations. L. ...k ekt dide b e U e 14
5.9 1S (= T ox o] PSS 15
6 Package SEMEaNICS...........o e e 15
6.1 Replacement Of SNOM FOMMIS..........oiieice e sttt e re e s e sseesteenteereeneenneennes 17
6.2 Order of replacement steps............oka b dda Lo L L L L 18
6.3 Flow graph representation of TTGN=3-behaviourards/sisllLcacia 201G 0290485t 18
6.4 Flow graph construction procedure ..o clsisiaes: 2020 18 Lavlala a2l 19
6.5 Flow graph representation of configuration fUNCLIONS............ccoviiiceisiesecece e 19
6.6 Retrieval of start NOAeS Of fFIOW Qraphs.........cce it eeenee s 20
6.7 1Y o0 (B LR r= = PR 20
6.8 ACCESSING thE MOUUIE SLALE ...ttt b et b e et b e e e b e b e b e b neene s 20
6.9 CONFIGUIBLTION SEBLEE ...ttt ettt b e et b et b e b e b e e bt e b e e bt s b et b e b e s e et b e s e et e b e s b et eb e b 21
6.10 Accessing the CONfiGUIALioN SLALE...........cociiirieiriere e b e sn e 21
6.11 ENEITY SEAEES ...ttt b kb ek bR bR R R bR b et bt b e n e 22
6.12 ACCESSING ENLITY SEALES. ... eevieieeeeceesteeste e ee e e e e s e s ee st e sreeste e te et e eseeste e te e teentesseesaeesseesseenseenteenseeneennensrens 24
6.13 Handling of CONNECLIONS @MONG POTS.......cuieiieieiieseese e ste e s e sreeste et e e e e sre e te e e e seesesseesneesseesseenseensenns 25
6.14 HaNdliNG OF PO SLALESccveiieiie et te e s s e e te et e et e saaeste e se e teenteensesneesneesneesseanseensenns 25
6.15 The evaluation procedure for a TTCN-3 MOTUIEcc.eeueiiiiiere e e e 26
6.16 LY L0 o g 0] 7= 1S =S PSS 26
6.17 PhEase |2 INITTAIIZAETON.........eiuieeeee bt se bbb bt ae bt et e st e e b e besaesbe e e eneennens 27
6.18 Phase 112 UPAELEcouieeeieieiei ettt b et bbbt b ettt e e 28
6.19 L T S = 1= (o] o SRS 28
6.20 PhESE [V 1 EXECULION ...ttt ettt st ettt e e et e seeste e eae e e e e e eeseeebesaeeseeneenseneeaseseesaeeneeneanseseens 28
6.21 (€1 o] o 7= I 11T 1 LSRR 29
6.22 ClEAI POt OPEIBEION.eteeetteteieete ettt sttt sttt ettt b e se st e b e se e st e b e s e ebeeb e s e e st e be s e e Rt ebesb e st e b e s e e st ebese e st ebese et ebennenees 29
6.23 Configuration FUNCEION Call.........coueiiiiii bbb e b e et 30
6.24 (01011 o100 0= = 1 o o SRS 31
6.25 L@z (ST o 0 < = 1o SRS 32
6.26 Flow graph segment <AiSCONNECE-lI>..........ccuiiiiiece e e e e e e e sae e reenreens 34
6.27 Flow graph segment <diSCONNECE-COMPS..........cccueiiieriieiereste e st e seesteeee e e s e re e e e e estesseesseesreesseesseenseensenns 35
6.28 Flow graph segment <diSCONNECE-POMTcciueiieiieieriese e seeseeste e e s e te e e teestesseesreesreesreesseenseensenns 36
6.29 Flow graph segment <di SCONNECE-tWO-PAr-PAITS>coueiririeiririeieesie ettt b e b e 36
6.30 EXECULE SALEIMENT ...ttt ettt et et e s bt e e bt e et e e eas e e e abeeeab e e et e e eaneesmbeeeaneesabeesnneeeneenaneean 37
6.31 Flow graph segment <exeCute-WithOUL-CONFIGSouiiiiirierire e 38
6.32 Flow graph segment <eXECULE-0N-CONTIG™c.ciiiieiriiieiriiie sttt 38

ETSI

4 ETSI ES 202 781 V1.1.1 (2010-08)

6.33 Flow graph segment <execute-on-config-WithOUL-tiMEOUL>cceeoiiiiicie e 38
6.34 Flow graph segment <execute-0Nn-CoNfig-tiMEOULS...........cviiieiie it sre e e e eee e 40
6.35 Flow graph segment <statement-BIOCK>ccoiiie e 42
6.36 L L 00] 1= 1 o) o PSS 43
6.37 Kill COMPONENE OPEIBEIONeeieceieieeecieste et eeeee et e e e st e s e s e e saeenteaseeeaeesse e seenseesseessesnsesneesneesseesseanseensenns 44
6.38 Flow graph segment SKilI-MIECSociiieece ettt e et esr et e sseesneesneesneensnenseens 46
6.39 Flow graph segment <Kill-all-COmPScouiiiiiee bbb e 46
6.40 KTl EXECULTON SEBLEIMIENT ... eieeeeeeieeeieie ettt e e s e tesbeseeete s e eae e e e eeeessesbeseeebeemeenseneessesaesaeeseeneaneeseens 48
6.41 Kill CONFIQUIALiON OPEIELIONcvieieeetieeeet sttt b et b bbbt e et b et eb e b 49
6.42 = o X oo = = (o o TSP U TSV P TSR PR 49
6.43 SEAMT POIT OPEFELION ...ttt sttt sttt sttt e ettt se et b e et e b s e e st b e s e e st e b e s e e aeebese e st e b e s e e st ebese e st eb e s e et nbennenees 50
6.44 StOP COMPONENT OPEFBLIONecueeeeeeereeieeteeeetesaeseeseesaeesseete e teesteassesseesseesseesaeesseenseanseeseenseenseenseeseessenssenssnes 51
6.45 FIoW graph SEgMENt SSIOP-IMECScci i e et et sae e te e be e e e stesneesneesneesaeessnensaensenns 53
6.46 Flow graph Segment <SOP-CONFIgSuiiiiie et ettt et e e esteetesseesreesneesneeseenseens 53
6.47 Flow graph segment <StOP-tC-CONTITSiiiiiiiiieeies et e e e teeeesneesreesneesneeseenrenns 54
6.48 S o] o) o0 0] 0= 7= 1 oo SRS 55
6.49 Flow graph segment SUNMEP-all>........coui ittt s ae e e sreesreesne e reenreens 57
6.50 Flow graph SEgment <UNMED-COMP™cceieiiierieririeiesesesseesesaesessessesessessessesessesesessessesessessesessessesessessensns 58
6.51 Flow graph SEgMENt SUNMIBID-PONESoiuiiieiiiirieieeertee ettt sb et bbbt b e bt b et sbenn s e 59
7 TRI EXtensioNS fOr the PACKAGEcv e 59
7.1 Changes and extensionsto clause 5.5.2 of ES 201 873-5 [3] Connection handling operations....................... 59
7.2 Extensions to clause 6 of ES 201 873-5 [3] Javalanguage Mappingc.cccevceereereeeireeeeseeseeseesieseesesseessens 61
7.3 Extensionsto clause 7 of ES 201 873-5[3] ANSI C language Mapping.........ccceeeeeereeseeseeseesemsesssesseesessees 61
7.4 Extensionsto clause 8 of ES 201 873-5[3] C++ language MappPingccceveereereeeireeeeseeseeseesiesseeesseseesens 61
8 TCl EXtensionS for the PaCKagEccoiiuiee ettt st ne s 62
8.1 Extensionsto clause 7.2:1:1 of.ES 201 873-6)[4] Management”. 4. /by /e 62
8.2 Extensionsto clause 7.3.1.1 of ES201 873-6 [4] TCI TM reqUIredccoerueirinieerieenieseeesieseeesie s 62
8.3 Extensionsto clause 7.3.1.2 of (ES2013873-6)[4](TCl TMprovided)...........ooeerineinineinineneneseseeeees 62
8.4 Extensionsto clause 7.3.3.1 of ES 201 873-6 [4] TCl CH requIred...........coereerinieenieereseeeseseeesie s 63
85 Extensionsto clause 7.3.3.2 of ES 201 873-6 [4] TCl CH provided...........cccouviriereneneinieeseneeesieseeees 64
8.6 Extensionsto clause 7.3.4 of ES 201 873-6 [4] TCI-TL-provided................. et e e et ns 64
8.7 Extensions to clause 8 of ES 201 873-6 [4]"Javalanguage mapping . ..o i e 66
8.8 Extensionsto clause 9 of ES' 201 873-6 [4] ANSI-Ctanguage Mapping........ccccerererereeeereesesressesresresseeseenes 67
8.9 Extensionsto clause 10 of ES 201 873-6 [4] C++ [anguage MapPingcceeeeereerererreeeeseeseeseesieesseeseesessnes 68
8.10 Extensionsto clause 11 of ES 201 873-6 W3C XML MEPPING ...veeveriereeieeieeseeseeesreseesseesseeseesseessesssesessens 69
Annex A (normative): BNF and static SEMantiCS......cceeveiiiieie et 71
A1l Additional TTCN-3LEMUNGIS.....c.cciiiririieieieeeeese ettt e et be b e b see e e 71
A.2 Modified TTCN-3 syntax BNF ProdUCTIONSccceoieiririiiirieriesiesee ettt 71
A.3 Additional TTCN-3 syntax BNF produCLiONS..........cccoueiririreresesieseeieeesesesie s 72
L TS 0] Y USSR 73

ETSI

5 ETSI ES 202 781 V1.1.1 (2010-08)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

ThisETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification
(MTS).

The present document relates to the multi-part standard covering the Testing and Test Control Notation version 3, as
identified below:

ES201873-1[1]: "TTCN-3 Core Language’;
ES 201 873-2[i.1]: "TTCN-3 Tabular presentation Format (TFT)";

ES 201 873-3[i.2]: "TTCN-3'Graphical presentation Format (GFT)®;
ES201873-4[2]: "TTCN-3 Operationa:Semantics";
ES201873-5[3]: "TTCN-3 Runtime Interface (TRI)";
ES201873-6[4]: "TTCN:3'Control ihterface (TCI)";
ES201873-7[i.3]: "Using ASN.1with TTCN-3";

ES201873-8[i.4]: "ThelDL to TTCN-3 Mapping';

ES 201 873-9[i.5]: "Using XML schemawith TTCN-3";

ES 201 873-10 [i.6]: "TTCN-3 Documentation Comment Specification”.

ETSI

6 ETSI ES 202 781 V1.1.1 (2010-08)

1 Scope

The present document defines the Configuration and Deployment Supportpackage of TTCN-3. TTCN-3 can be used for
the specification of all types of reactive system tests over avariety of communication ports. Typical areas of application
are protocol testing (including mobile and Internet protocols), service testing (including supplementary services),
module testing, testing of CORBA based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can
be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing.
The specification of test suites for physical layer protocolsis outside the scope of the present document.

TTCN-3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as conceptsin the
TTCN-3 core language, but which are optional as part of a package which is suited for dedicated applications and/or
usages of TTCN-3.

This package defines the TTCN-3 support for static test configurations.

While the design of TTCN-3 package has taken into account the consistency of a combined usage of the core language
with a number of packages, the concrete usages of and guidelines for this package in combination with other packages
is outside the scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any-amendments) applies.

Referenced documents which are not found.te be publicly.available inthe expected |ocation might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity. '

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language”.

2] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[5] I SO/IEC 9646-1: "Information technology - Open Systems | nterconnection -Conformance testing
methodology and framework; Part 1. General concepts’.

2.2 Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI

7 ETSI ES 202 781 V1.1.1 (2010-08)
[i.2] ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

[i.3] ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

[i.4] ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

[i.5] ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML with TTCN-3".

[i.6] ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions givenin ES 201 873-1 [1], ES 201 873-4 [2],
ES 201 873-5[3], ES 201 873-6 [4] and | SO/IEC 9646-1 [5] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviationsgiven in ES 201°873-1 1], ES 201 873-4 [2],
ES 201 873-5[3], ES 201 873-6 [4], | SO/'EC-9646-11 [5],and the following apply:

MTC Main Test Component
PTC Parallel Test Component:
4 Package conformance and compatibility

The package presented in the present document isidentified by the package tag:

"TTCN-3:2009 Static Test Configurations" - to be used with modules complying with the present
document.

For an implementation claiming to conform to this package version, all features specified in the present document shall
be implemented consistently with the requirements given in the present document and in ES 201 873-1[1] and
ES201873-4[2].

The package presented in the present document is compatibl e to:
. ES 201 873-1[1] version 4.2.1;
. ES 201 873-2[i.1] version 3.2.1;
. ES 201 873-3[i.2] version 3.2.1;
. ES 201 873-4 [2] version 4.2.1;
. ES 201 873-5[3] version 4.2.1;
. ES 201 873-6 [4] version 4.2.1;
. ES 201 873-7[i.3] version 4.2.1;

. ES 201 873-8[i.4] version 4.2.1;

ETSI

8 ETSI ES 202 781 V1.1.1 (2010-08)

ES 201 873-9[i.5] version 4.2.1;

ES 201 873-10[i.6] version 4.2.1.

If later versions of those parts are available and should be used instead, the compatibility to the package presented in the
present document has to be checked individually.

5

Package Concepts for the Core Language

This package defines the TTCN-3 means to define static test configurations. A static test configuration is a test
configuration with alifetime that is not bound to a single test case. The test components of a static test configuration
may be used by several test cases. This package realizes the following concepts:

A specia configuration function is introduced which can only be called in the control part of a TTCN-3
module to create static test configurations. The configuration function returns a handle of the predefined type
configuration to access an existing static test configuration.

A static test configuration consists of static test components, atest system interface, static connections and
static mappings. These constituents have the following semantics:

- A static test component is a special kind of test component that can only be created during the creation of
a static test configuration and can only be destroyed during the destruction of a static test configuration.
By definition, the MTC of a static test configuration is a static test component.

- The test system interface of a static test configuration plays the same role as the test system interface of a
test configuration.created by atest case.

- A static connection is a connection between static,test components. It can only be established during the
creation of a static test configuration@and anly: be destroyed-during the destruction of a static test
configuration.

- A static mapping is a mapping of a port of a static test component to a port of the test system interface of
a static test configuration.”Such a mapping can only be‘established during the creation of a static test
configuration and only be' destroyed during the destruiction of ‘astatic test configuration.

A static test configuration can be used by several test cases. For thisthe test caseis started on a previously
created static test configuration. This means:

- The body of the test case is executed on the MTC of the static test configuration.
- The MTC may start behaviour on other static test components of the static test configuration.

- Static test components may create, start, stop and kill normal and alive test components. The lifetime of
these components is bound to the actual test case that is executed on the static test configuration. In case
that a normal and alive test component is not destroyed explicitly by another test component, it is
implicitly destroyed when the test case ends.

- During test case execution non-static connections and non-static mappings may be established. The
lifetime of non-static connections and non-static mappings is bound to the actual test case that is
executed on the static test configuration. In case that a non-static connection or a non-static mapping is
not destroyed explicitly by another test component, it isimplicitly destroyed when the test case ends.

Component timers and variables of static test components are not reset or reininitialized when atest caseis
started on a static test configuration. They remain in the same state as when they were left after the creation of
the static test configuration or after the termination of a previoustest case. This allows to transfer information
from one test case to another.

Ports of static test components are not emptied or restarted when atest caseis started on a static test
configuration. For example, this allows a delayed handling of SUT responses like e.g. repetitive status
messages, during the test campaign. In addition, all port operations (i.e. clear, start, stop and halt) are
disallowed for ports of static test components. All ports of a static test component remain started during the
whole lifetime of a static test configuration.

ETSI

9 ETSI ES 202 781 V1.1.1 (2010-08)

. In contrast to component timers, variables and ports, the verdict and the default handling is reset. This means
al activated defaults are deactiviated, al local verdicts and the global verdict are set to none.

5.1 The special configuration type: configuration

The specia configuration type configuration isahandle for static test configurations. The special valuenull is
available to indicate an undefined configuration reference, e.g. for the initialization of variables to handle a static test
configuration.

Values of type configuration shall betheresult of configuration functions, they can be checked for equality,

e.g. to check if two variables store the same value, and they can be used in execute statements for starting atest case
on an existing static test configuration and in ki1l configuration statements to destroy an existing static test
configuration.

EXAMPLES:
var configuration myStaticConfig := null; // Declaration and initialization of a
// configuration variable.
myStaticConfig := aStaticConfig() ; // Assigns a value to the previously declared
// configuration variable. It is assumed that
//aStaticConfig() is a configuration function.
myStaticConfig.kill // Kills the static test configuration stored in

// variable myStaticConfig.

5.2 The configuration function

A configuration function allows the start of a static test configuration.

Syntactical Structure

configuration ConfigurationIdentifier

([{ (FormalValueBaziFormalTemplatePar)n i kit Loty
runs on ComponentType

[system ComponentType 1]

StatementBlock

Semantic Description

A configuration function allows the start of a static test configuration. A configuration function has to be defined in the
definitions part of a TTCN-3 module and shall only be invoked in the control part of a TTCN-3 module. By definition, a
configuration function returns avalue of type configuration if the start of the configuration was successful, or
null if the start of the configuration was not successful.

The invocation of a configuration function causes the creation of the MTC and the test system interface of the static test
configuration. The types of MTC and test system interface shall bereferenced inaruns on and a system clause.
The system clauseis optional and can be omitted, if the test system has exactly the same ports as the MTC and these
ports are mapped one to one to each other.

The behaviour in the body of a configuration function shall be executed on the newly created MTC. During the start of
atest configuration only behaviour on the MTC shall be executed and only static test components, static connections
and static mappings shall be created or established. Communication with the SUT or with static PTCsis not allowed.

NOTE: The configuration function only returns areference to atest configuration and no verdict. However,
communication with the SUT might have to be checked. For this purpose, intial communication, e.g. for
registration or coordination purposes, could be defined in form of atest case.

A static test configuration is successfully started if the behaviour of the corresponding configuration function has been
executed till itsend or if areturn statement in the corresponding configuration function is reached. In case of a
successful start, areference to the newly created configuration is returned. The usage of astop or akill statement
allows to specify an unsuccessful start of a static test configuration. In case of an unsuccessful start, the valuenull is
returned.

ETSI

10 ETSI ES 202 781 V1.1.1 (2010-08)

Restrictions
a) Therulesfor formal parameter lists for the configuration function shall be followed as defined in clause 5.4 of
ES 201 873-4[2].

b) Configuration functions shall only be invoked in the module control part.
c) For the behaviour definition in the body of the configuration function the following restrictions shall hold:
- Only static test components, static connections and static mappings shall be created or established.

- Once created or established static test components, static connections and static mappings shall not be
destroyed.

- It is not allowed to create and establish non-static test components, connections and mappings.
- Itis not allowed to start behaviour on newly created static test components.
- Communication, timer and port operations are not allowed.

EXAMPLES:

// The following configuration function can be used to start a simple static test configuration
// which only consists of one MTC.

configuration simpleStaticConfig () runs on MyMTCtype({}

// The following configuration function starts a more complex static configuration.
// Configuration information is stored in MTC component variables. Further non-static
// connections and mappings. may be-established by the_test cases, that_are_executed

// on this configuration.

configuration aComplexStaticConfig- (im, iflteger!NoOfPTCE) ruis) on MyMTCtype system MySystemType {
var integer i;

if (NoOfPTCs < 0) {
log ("Negative number of PTCs")y

kill; J/ardasucdessful / termination
1
else if (NoOfPTCs > MaxNoOfPTCs) // MaxNoOfPTCs is a constant

log ("Number of PTCs is too high");

kill; // unsuccessful termination
1
else

for (i := 1, i <= NoOfPTCs, i := i + 1) {

PTC[i] := PtcType.create static; // creation of static PTCs,
// Array PTC[] is a component variable

connect (mtc:SyncPort, PTC[i]:SyncPort) static; // static connection

}

map (mtc:PCO, system:PCOl) static; // static mapping of MTC.
map (PTC[1] : PCO, system:PCO2) ; // some static mappings of PTCs,
map (PTC[2] : PCO, system:PCO3) ; // further non-static mappings may be

// established during test runs

}

return; // successful termination

5.3 Starting a static test configuration

A static test configuration is started by calling a configuration function in the control part of a TTCN-3 module. In case
of asuccessful start, areference to the newly created static test configuration is returned. In case of an unsuccessful
start, the special value null is returned.

ETSI

11 ETSI ES 202 781 V1.1.1 (2010-08)

EXAMPLES:

control
var configuration myStaticConfig := null; // Declaration and initialization of a
// configuration variable.

myStaticConfig := aStaticConfig() ; // Assigns a value to the previously declared
// configuration variable. It is assumed that

// aStaticConfig() is a configuration function.

if (myStaticConfig == null)

stop; // Stop test campaign due to an unsuccessful start
else {
execute (MyTestCase () ,myStaticConfig) // Successful start, continuation of test campaign
1
1
5.4 Destruction of static test configurations

A static test configuration can be destroyed by executing a kill configuration operation.

Syntactical Structure

ConfigurationReference.kill

Semantic Description

The execution of akill configurati on' epération/calises the'destricti on'of a static'tést canfiguration. The destruction is
similar to stopping atest case by killing the MTC. This means, resources of al static PTCs shall be released and the
PTCs shall be removed. The only difference isthat no test-verdict iscalculated and returned. After executingthekill
configuration operation, it is not possible to execute atest case on the killed static test configuration.

Executing the kill configuration operation with'the special value null'shal have no effect, executing akill
configuration operation withlareférence to‘anon existing static tést configuration shall cause a runtime error.

Restrictions
a) Thekill configuration operation shall only be executed in the control part of a TTCN-3 module.

EXAMPLES:

control ({
var configuration myStaticConfig := null; // Declaration and initialization of a
// configuration variable.

myStaticConfig := aStaticConfig() ; // Assigns a value to the previously declared
// configuration variable. It is assumed that
// aStaticConfig() is a configuration function.

myStaticConfig.kill // Destruction of the previously started static
// test configuration.

5.5 Creation of static test components

The creation of static test components shall be indicated by the additional keyword static inthe create operation.
The extension of the create operation in clause 21.2.1 of ES 201 873-4 [2] required for the creation of static test
components is described in the following sections.

Syntactical Structure

ComponentType "." create [" (" Expression ")"] [alive | static]

ETSI

12 ETSI ES 202 781 V1.1.1 (2010-08)

Semantic Description

The create operation in combination with the keyword static shall only be used to create static test components.
Static test components can only be created by executing a configuration function and by functions directly or indirectly
invoked by configuration functions. The keyword static inacreate operation shall not be used in combination
with the keyword alive.

NOTE 1: During thelifetime of astatic test configuration, a static component behaves like an alive component.

Static test components are created in the same manner as normal test components that are not declared as alive
components. Further details on this can be found in clause 21.2.1 of ES 201 873-4 [2].

NOTE 2: Static test components can only be created directly or indirectly by a configuration function. This may be
checkable at runtime and therefore the keyword static may not be required, but for having an explicit
specification of static test configurations and for keeping the feature of static test configurations
extendible, the keyword static has been introduced.

Restrictions

a) Thecreate operation in combination with the keyword static shall only be invoked in configuration
functions and in function that may be directly or indirectly called by such a configuration function.

b) Thekeyword static inacreate operation shal not be used in combination with the keyword alive.

EXAMPLES:

// This example declares variables of type MyComponentType, which are used to store the
// references of newly created static component instances of type MyComponentType.
// An associated name, ig allocated to some of the created component instances.

var MyComponentType MyNewComponent;
var MyComponentType MyNewestComponent;

MyNewComponent := MyComponentType.create static;

MyNewestComponent := MyComponentType.create ("Newest") static;
5.6 Establishment of static ‘connections’and static mappings

The establishment of static connections and static mappings shall be indicated by the additional keyword static in
connect and themap operations. The extension of the connect and map operation in clause 21.1.1 of

ES 201 873-4 [2] required for the establishment of static connections and mapping is described in the following
sections.

Syntactical Structure

connect " (" ComponentRef ":" Port "," ComponentRef ":" Port ")" [static]
map " (" ComponentRef ":" Port "," ComponentRef ":" Port ")" [static]

Semantic Description

The connect and map the operation in combination with the keyword static shall only be used to establish static
connections and static mappings. Static connections and static mappings can only be established by executing the
creator function of a configuration type and by functions directly or indirectly invoked by the creator functions of
configuration type.

Static connections and static mappings are established in the same manner as normal connections and mappings. Further
details on this can be found in clause 21.1.1 of ES 201 873-4 [2].

NOTE: Static connections and mappings can only be established directly or indirectly by a creator function of a
configuration type. This may be checkable at runtime and therefore the keyword static may not be
required, but for having an explicit specification of static test configurations and for keeping the feature of
static test configurations extendible, the keyword static has been introduced.

ETSI

13 ETSI ES 202 781 V1.1.1 (2010-08)

Restrictions

a) Theconnect and map operation in combination with the keyword static shall only beusedin
configuration functions and in functions that may be directly or indirectly called by a configuration function.

b) Static connections and static mappings shall only be established to connect ports of static test components and
to map ports of a static component to the ports of the test system interface of a configuration type.

EXAMPLES:

// The following code fragment may be part of a creator function of a configuration type.
// It is assumed that the ports Portl, Port2, Port3 and PCOl are properly defined and declared
// in the corresponding port type and component type definitions

var MyComponentType MyNewPTC;
MyNewPTC := MyComponentType.create static;

connect (MyNewPTC:Portl, mtc:Port3) static;
map (MyNewPTC:Port2, system:PCOl) static;

5.7 Test case definitions for static test configuration

Test cases that are executed on a static test configuration have to defined in a special manner. Such test cases shall
reference the configuration function that starts a static configuration on which the test case can be executed. The type of
the MTC and the type of the test system interface are referenced in the configuration function and shall therefore not be
specified in the test case header. The extension of the test case definition in clause 16.3 of ES 201 873-4 [2] required for
the execution of atest case on a static test configuration is described in the following sections.

Syntactical Structure

testcase TestcaselIdentifier

"(m [{ (FormalValuePar | FormalTemplatePar) [","] }] ")"
(runs on ComponentType [system ComponentType] | execute on ConfigurationType)
StatementBlock

Semantic Description

A test case definition that includes an execute on clause will be executed on previously created static test
configuration of the given configuration type. The type of the MTC and the type of the test system interface is defined
in the referenced configuration type. A test case definition that includes an execute on clause shall not have aruns
on Or asystem clause.

Apart from the execute on clause, the definition of test cases to be executed on a static test configuration follows the
same rules as described in clause 16.3 of ES 201 873-4 [2].

Restrictions
a) A test case definition that includes an execute on clause shall not have a runs on or asystem clause.
EXAMPLES:
configuration aConfiguration () runs on MyMTCtype system MySystemType {
PeerComponent := MyPTCType.create static; // creation of a static PTC
// PeerComponent is a component variable
connect (mtc:syncPort, PeerComponent:syncPort) ; // static connection
map (mtc:PCOl, system:PCO1) // static mapping ot MTC
map (PeerComponent:PCO2, system:PCO2); // static mapping of Peer Component
return // successful start of test configuration
}
testcase MyTestCase () execute on aConfiguration {
default := activate (UnexpectedReceptions()); // activate a default

ETSI

	´(HOÙt†6¹lû¼õ�Ò9ÂvŒ¯]�}˝æFÙG‘ÐƒÅRÄ“4=ù�øO�łõN›NF�ÞıkpáIBÓˇ€•#¡¿ÜsHßn®\M�ﬂÔg�hﬂªx�ˇ−wg‹Ðäà“Å^žø¯ØŠÊU¡¯Îªò¢ûg�(À.‹E^Ú®

