INTERNATIONAL STANDARD

First edition 2002-11-15

Aerospace — UNJ threads — Gauging

Aéronautique et espace — Filetage UNJ — Vérification par calibres

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 15872:2002</u> https://standards.iteh.ai/catalog/standards/sist/174c32bf-955f-46aa-9ec0-4380a45d57e8/iso-15872-2002

Reference number ISO 15872:2002(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 15872:2002</u> https://standards.iteh.ai/catalog/standards/sist/174c32bf-955f-46aa-9ec0-4380a45d57e8/iso-15872-2002

© ISO 2002

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch

Printed in Switzerland

Contents

Fore	word	iv
1	Scope	1
2	Normative references	1
3 3.1 3.2	Terms, definitions, symbols and abbreviated terms Terms and definitions Symbols and abbreviated terms	1 1 2
4 4.1 4.2	Types of gauges Gauges and setting plugs for external product threads Gauges for internal product threads	3 3 3
5	Reference temperature	4
6 6.1 6.2	Function, design and use of gauges Gauges for external threads Gauging for internal threads	
7	Setting gauges for external threads	6
8	Gauging of threads Teh STANDARD PREVIEW	6
Anne	ex A (normative) Prevalence of gauging by GO gauges entropy of the second se	
Biblio	ography	
	https://standards.iteh.ai/catalog/standards/sist/174c32bf-955f-46aa-9ec0-	

4380a45d57e8/iso-15872-2002

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15872 was prepared by Technical Committee ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 4, *Aerospace fastener systems*.

Annex A forms a normative part of this International Standard. (standards.iteh.ai)

> <u>ISO 15872:2002</u> https://standards.iteh.ai/catalog/standards/sist/174c32bf-955f-46aa-9ec0-4380a45d57e8/iso-15872-2002

Aerospace — UNJ threads — Gauging

1 Scope

This International Standard gives information for the gauging of ISO UNJ threads complying with ISO 3161.

Other methods of ensuring that the product is within the specified limits may be used, provided correlation with the specified gauges is established [see 8.2.e)].

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. iteh.ai

ISO 1:2002, Geometrical Product Specifications (GPS) — Standard reference temperature for geometrical product specification and verification

https://standards.iteh.ai/catalog/standards/sist/174c32bf-955f-46aa-9ec0-

ISO 3161:1999, Aerospace — UNJ threads 380 General requirements and limit dimensions

ISO 5408:1983, Cylindrical screw threads — Vocabulary

ISO 8015:1985, Technical drawings — Fundamental tolerancing principle

ISO 14253-1:1998, Geometrical Product Specifications (GPS) — Inspection by measurement of workpieces and measuring equipment — Part 1: Decision rules for proving conformance or non-conformance with specifications

ISO/TR 14638:1995, Geometrical product specification (GPS) — Masterplan

3 Terms, definitions, symbols and abbreviated terms

3.1 Terms and definitions

For the purposes of this International Standard, the terms and definitions given in ISO 5408 and the following apply.

3.1.1

best wire size

cylinder or sphere which has a radius so that it will contact the thread flanks at the pitch cylinder intersection

NOTE The radius of the best wire or sphere is theoretically equal to 0,288 68*P*.

3.1.2

indicating gauge

device having contacts which will precisely compare the size of a work piece thread to a setting standard of known dimensions

NOTE The value for the indicated characteristic thus established is the dimensional value attributed to the work piece. An indicating gauge may have contacts designed to measure any thread characteristic. This International Standard specifies the characteristics and designs for ISO UNJ threads.

3.1.3

simple pitch diameter

diameter of an imaginary cylinder intersecting an actual thread over the width of one groove where that width is equal to one half of the basic pitch

3.1.4

virtual pitch diameter

pitch diameter of the smallest (for external threads) or largest (for internal threads) perfect thread form with GO gauge profile which can engage the product threads for a distance equal to the GO gauge thread engagement

3.2 Symbols and abbreviated terms

See Table 1.

Symbol or abbreviated term	ITeh STAND. Definition (standa	A rc	Symbol or abbreviated Set term	Definition
D ₁	Basic minor diameter of the internal thread of a workpiece	<u> 58</u>	$72:200^{T}_{\alpha 1}/2$	Tolerance for each flank angle of a profile with complete flanks
d ₂	Basic pitch diameter of the external a45d57 thread of a workpiece	nda e8/i	io-158 7₂₂12)02	Tolerance for each flank angle of a profile with truncated flanks
es	Fundamental deviation of the external thread of a workpiece		T _{CP}	Tolerance on the pitch diameter of GO and NOT GO screw check plugs, wear check plugs and setting plugs
EI	Fundamental deviation of the internal thread of a workpiece		T _d	Tolerance for the major diameter of the external thread of a workpiece
Н	Height of the triangle of a thread profile		T _{d2}	Tolerance for the pitch diameter of the external thread of a workpiece
H ₁	Tolerance for the diameter of plain plug gauges		T _{d3}	Tolerance for the minor diameter of the external thread of a workpiece
H _P	Tolerance on the size of check plug gauges for plain calliper gauges		T _{D1}	Tolerance for the minor diameter of the internal thread of a workpiece
LML	Least material limit		<i>T</i> _{D2}	Tolerance for the pitch diameter of the internal thread of a workpiece
т	Distance between the middle of the tolerance zones T_R of a screw ring gauge and T_{CP} of a GO check plug		T _{PL}	Tolerance for the pitch diameter of GO and NOT GO screw plug gauges
MML	Maximum material limit		T _R	Tolerance for the pitch diameter of GO and NOT GO screw ring gauges
Р	Pitch		W _{GO}	Amount available for permissible wear of GO screw plug gauges and GO screw ring gauges

Table 1 — Symbols, abbreviated terms and definitions

lable 1 (continued)	ble 1 (continued	d)
---------------------	------------------	----

Symbol or abbreviated term	Definition	
W _{NG}	Amount available for permissible wear of NOT GO screw plug gauges and NOT GO screw ring gauges	
Z ₁	Distance between the middle of the tolerance zone H_1 of a GO plug gauge and the lower limit of the minor diameter of a workpiece	

Symbol or abbreviated term	Definition	
Z _{PL}	Distance between the middle of the tolerance zone T_{PL} of a GO screw plug gauge and the lower limit of a workpiece thread	
Z _R	Distance between the middle of the tolerance zone T_R of a GO screw ring gauge and the upper limit of a workpiece thread	

4 Types of gauges

4.1 Gauges and setting plugs for external product threads

The function, design and use of gauges and setting plugs for external product threads are explained in the following subclauses:

	iT Gauge type NDARD PREVIE	Subclause
a)	GO screw ring gauges (standards.iteh.ai)	6.1.2
b)	Setting plug for adjustable GO screw ring and indicating thread gauges	7.1
C)	Virtual pitch diameter indicating thread gauges/standards/sist/174c32bf-955f-46	aa-9ec 6.1.1
d)	Simple pitch diameter indicating thread gauges	6.1.3
e)	Flat contact gauges for major diameter	6.1.4
f)	Point contact indicating thread gauges for minor diameter	6.1.5
g)	Optical comparator for root radius and minor diameter	6.1.6

4.2 Gauges for internal product threads

The function, design and use of gauges for internal product threads are explained in the following subclauses:

	Gauge type	Subclause
a)	GO screw plug gauges	6.2.1
b)	NOT GO screw plug gauges	6.2.2
c)	Plain gauges for minor diameter (plug gauge)	6.2.3
d)	GO full form screw plug gauges	6.2.3.2
e)	Virtual pitch diameter indicating thread gauges	6.2.4
f)	Simple pitch diameter indicating thread gauges	6.2.5
g)	Setting ring gauge for indicating thread gauges (solid type)	6.2.6

5 Reference temperature

In accordance with ISO 1, the dimensions of the gauge and the product shall be checked at the temperature of 20 °C.

If the product and the gauge have the same coefficients of linear expansion, the temperature may deviate from 20 °C provided the temperature of the product and the gauge are the same.

If the product and the gauge have different coefficients of linear expansion, the temperature of both, at the time of gauging, shall be:

- a) 20 °C \pm 2 °C for sizes 1,000 UNJ and smaller;
- b) 20 °C \pm 1 °C for larger threads.

6 Function, design and use of gauges

6.1 Gauges for external threads

6.1.1 Virtual pitch diameter indicating thread gauges

6.1.1.1 It measures, on two or three segments or rolls, the maximum material virtual pitch diameter taking into account variations of form such as pitch variation, helix and flank variations, roundness and taper which produces an enlargement of the virtual pitch diameter. In addition, virtual pitch diameter control ensures the flank angle contact is sufficient to assure that the root radius does not exceed the maximum limit. Measurement of virtual pitch diameter with indicating gauges shall be obtained to calculate virtual minus simple pitch diameter differential unless the simple pitch diameter limits, gauged in accordance with 6.1.3, are within the limits defined by the maximum pitch diameter and the form variation limits in ISO 3161 rcs.iteh.ai)

6.1.1.2 Indicating gauges have two or three contacts at 180° or 120° respectively. Gauges with segments or rolls are designed with the length of the GO virtual maximum material gauging elements equal to the GO ring gauge length equal to nine pitches (*P*) or the basic major diameter of the thread, whichever is the smallest. For configuration and profile requirements, see Figure 1.5d57e8/iso-15872-2002

6.1.1.3 The minor diameter of the GO virtual maximum material thread segments and the diameter of the circle surrounded by the roll cluster of GO virtual maximum material rolls shall be equal to the pitch diameter of the product minus 0,375H, less the T_{PL} value in Table 2 minus tolerance when assembled in the gauge frame. This corresponds to a flat width of 0,3125P on the minor crest for the thread. The crest shall be flat in an axial plane and parallel to the axis of the segments or rolls.

6.1.1.4 The major diameter of the GO virtual maximum material segments and the root of the GO virtual maximum material rolls shall be cleared beyond a 0,125*P* flat either by an extension of the flanks of the thread toward a sharp vee or by an undercut no greater than 0,125*P* maximum width and approximately central. The root clearance shall be such that the major diameter of the full form section of the thread setting plug gauge is cleared after the assembled gauge has been properly set to size.

6.1.1.5 The pitch diameter cylinder axis of threaded segments and rolls shall be straight within the diameter tolerance zone equal to T_{PL} specified in Table 2. The half-angle variations in the segment or roll thread shall be within the limits specified in Table 3. For the pitch variations, see Table 4.

6.1.2 Solid or adjustable GO screw ring gauges

To ensure the ease of assembly of product threads and conformance to the maximum material virtual pitch diameter limits, GO screw ring gauges with thread form in accordance with Figure 1 and setting gauges in accordance with 7.1 may be used. Solid GO screw ring gauges shall not be permitted to exceed the product thread dimensional limits. The gauge thickness / length shall be standardized, see 6.1.1.2. The gauge tolerances shall be in accordance with the amount W_{GO} available for permissible wear of GO screw plug gauges and GO screw ring gauges, see Table 5.

6.1.3 Simple pitch diameter indicating thread gauges

The simple pitch diameter indicating gauge with cone and vee rolls or segments or rolls with best wire size radius is applied to insure that the pitch diameter is greater than the minimum limit. The indicators are set to the GO threaded setting plug gauge. Readings indicate the position of the pitch diameter and the minimum measurement shall be no less than the minimum pitch diameter limit. The minimum measured pitch diameter shall be within the ISO 3161 form variation limit compared to the virtual pitch diameter measurement in accordance with 6.1.1, i.e. the differential value.

The simple pitch diameter contacts have cone and vee rolls or segments which contact the product pitch cylinder. Other designs have two or three rolls with radii on annular ribs on rolls made to best wire size. The product thread contacts is restricted to 1,5 pitch lengths. See Figures 2 and 3 for design and contact form.

6.1.4 Major diameter gauges

The maximum limit of the major diameter may be checked with a plain ring gauge, a plain GO calliper, or plain diameter-measuring device, see Figure 4. The minimum limit of the major diameter shall be checked with a plain diameter measuring device set to a plain diameter plug with $H_{\rm P}$ tolerance, see Table 6. A plain micrometer calliper may be used to measure the major diameter and may have standard gauge block settings.

6.1.5 Minor diameter gauges

It shall be set to the plain minor diameter setting plug with H_{P} tolerance, see Table 6. See Figure 5 for design and contact form.

6.1.6 Optical comparator checks

The optical comparator shall be used to verify the root radius by comparing the shadow contour to the radius charts. The minor diameter may also be measured with an optical comparator using appropriate measuring techniques.

ISO 15872:2002

6.2 Gauging for internal sthreads: h.ai/catalog/standards/sist/174c32bf-955f-46aa-9ec0-4380a45d57e8/iso-15872-2002

6.2.1 GO screw plug gauges

To ensure the ease of assembly of threads and conformance to the maximum material virtual pitch and major diameter limits, GO screw plug gauges or the full form GO screw plug gauge in accordance with 6.2.3.2 shall be used. For gauge tolerances, see Tables 2, 3 and 4.

6.2.2 NOT GO screw plug gauges

To check that the simple pitch diameter is not greater than the maximum limit, NOT GO screw plug gauges shall be used. For gauge tolerances, see Tables 2, 3 and 4.

6.2.3 Minor diameter gauges

6.2.3.1 The minimum minor diameter may be evaluated by a plain cylindrical GO plug gauge or a GO full form screw plug gauge in accordance with 6.2.3.2. The maximum minor diameter may be checked with a plain cylindrical NOT GO plug gauge. The diameters of the plain plugs shall be based on the minimum minor diameter specified in ISO 3161 with gauge tolerance H_1 specified in Table 7. Internal micrometer callipers may be used to measure the minor diameter.

6.2.3.2 The GO full form screw plug gauge shall be a modified GO screw plug gauge with a controlled root radius on the gauge, (see Figure 6), equal to the maximum external thread root radius specified in ISO 3161 with a radius tolerance in accordance with Table 8.

6.2.4 Virtual pitch diameter indicating thread gauges

6.2.4.1 It measures, on two or three segments or rolls, the maximum material virtual pitch diameter taking into account variations of form such as pitch variation, helix and flank variations, roundness and taper which produces a

decrease in the virtual pitch diameter. The virtual pitch diameter shall be measured using indicating gauges to calculate the simple minus virtual pitch diameter differential unless the simple pitch diameter limits are within the limits defined by the minimum pitch diameter and the form variation limits in ISO 3161.

6.2.4.2 Indicating gauges have two or three contacts at 180° or 120° respectively. Gauges with segments or rolls are designed with the length of the GO virtual maximum material gauging elements equal to the GO plug gauge length equal to nine pitches (*P*) or the basic major diameter of the thread, whichever is the smallest. For configuration and profile requirements, see Figure 7.

6.2.5 Simple pitch diameter indicating thread gauges

The simple pitch diameter indicating thread gauge with cone and vee rolls or segments or rolls with the best wire size radius is applied to insure that the pitch diameter is not greater than the maximum limit. The indicators are set to the GO threaded ring gauge. Readings indicate the position of the pitch diameter and the maximum measurement shall be not greater than the maximum pitch diameter limit. The maximum measured pitch diameter shall be within the ISO 3161 form variation limit compared to the virtual pitch diameter measurement made in accordance with 6.2.4.1.

The simple pitch diameter contacts have cone and vee rolls or segments which contact the product pitch cylinder. Other designs have two or three rolls with radii on annular ribs on rolls made to best wire size. The product thread contacts is restricted to 1,5 pitch lengths. See Figures 8 and 9 for design and contact form for simple pitch diameter indicating thread gauges.

6.2.6 Setting ring gauge for indicating thread gauges

The virtual pitch diameter indicating thread gauge and the simple pitch diameter indicating thread gauge to measure internal threads is set with the solid GO screw ring gauge.

(standards.iteh.ai)

7 Setting gauges for external threads ISO 15872:2002

https://standards.iteh.ai/catalog/standards/sist/174c32bf-955f-46aa-9ec0-

7.1 The virtual pitch diameter indicating gauge is set to the threaded setting plug whose average simple pitch diameter (see Figure 10), is below basic size by the value *m* specified in Table 9. The *m* factor adjusts the size of the setting plug so as to correct for the potential diametrical equivalents of the average variation which would be expected in the pitch and flank angles of the plug for adjustable GO screw ring gauges.

7.2 Set and check the GO screw ring gauge as required. Check the GO screw plug gauge as required.

7.3 Set the simple pitch diameter indicating gauge to the calibrated or marked pitch diameter setting plug gauge. These gauges are the same setting gauges as described in 7.1 to permit differential measurement calculations.

7.4 Set the major and minor diameter indicating gauges to their respective plain setting plugs. The diameter of these plain setting plugs shall be made to the maximum dimension with a negative tolerance of $H_{\rm P}$, see Table 6 and Figures 11 and 12. The micrometer callipers may have standard gauge block settings.

8 Gauging of threads

8.1 Gauges with a wear allowance, which allows gauges to exceed the maximum or minimum limits of the product thread, are not permitted for UNJ threads.

A product thread characteristic is acceptable when any appropriate standardized gauge can be assembled. The manufacturer is responsible for ensuring that, whatever the case, the means ultimately assures characteristics in accordance with the envelope requirements (see annex A).

- 8.2 External threads shall be evaluated as follows:
- a) check the virtual pitch diameter by measurement using either an indicating gauge or an assembly with a GO threaded ring gauge;
- b) measure the simple pitch diameter with an indicating gauge;
- c) compare the difference between the virtual and simple pitch diameter measurements to evaluate the cumulative effect of variations defined in ISO 3161;
- d) check thread minor and major diameters with indicating gauge and root contour with an optical comparator or tracing machine;
- e) normally, the use of more than one gauge option is not required. A product thread characteristic is accepted if it satisfies any one appropriate standard gauge. However, if there is a conflict between gauges for the product external thread maximum material limit, the product thread shall be accepted as long as the thread satisfies the GO thread ring gauge. Wear check plugs shall not exceed the basic profile.
- 8.3 Internal threads shall be evaluated as follows:
- a) check the maximum material limit of the virtual pitch diameter as well as the minimum major diameter with a GO screw plug gauge. A full form screw plug gauge may be used for this check. A check for the virtual pitch diameter by measurement with an indicating thread gauge may be used also;
- b) check the minimum material pitch diameter with a NOT GO screw plug gauge. Measuring the simple pitch diameter with an indicating thread gauge is, except for thread sizes less than 0,190 in, required;
- c) check the minimum minor diameter with either a GO plain plug gauge or GO full form screw plug gauge. Use a NOT GO plain plug gauge to check the maximum minor diameter.

ISO 15872:2002

Table 2 — Tolerances for pitch diameter of GO and NOT GO screw plug gauges and on pitch diameter of GO and NOT GO screw check plugs, wear check plugs and setting plugs

	Tolerances in inches				
T_{d2} or T_{D2}		$T_{\sf CP}{}^{\sf a}$	T_{PL}^{b}		
over up to and including					
	_	0,002	0.000.2	0.000.2	
	0,002	0,003	0,000 2	0,000 2	
	0,003	0,006	0,000 3	0,000 3	
0,006 0,008		0,000 35	0,000 4		
	0,008	0,012	0,000 47	0,000 5	
	0,012	0,020	0,000 6	0,000 7	
	0,020	0,026	0,000 7	0,000 9	
а	See Figure 10.				
b	See Figure 13.				

Table 3 —	Tolerances	for	each	half-angle
	1010101000		04011	nan angio

Tolerances in minutes of an angle

	Pitch			
Number of threads per inch	Р	Τ _{α1} /2 ^a	Τ _{α2} /2 ^a	
	in			
80	0,012 500	± 60		
72	0,013 889	± 4	48	
64	0,015 625	±	40	
56	0,017 857	±:	35	
48	0,020 833	±:	31	
44	0,022 727	±ź	26	
40	0,025 000	± :	25	
36	0,027 778	±ź	21	
32	0,031 250	± 18		
28	0,035 714	± 17	± 17	
24	0,041 667	± 16	- 10	
20	0,050 000	± 15	± 16	
₁₈ 11 ei	0,055 556	±13	IEW	
16	(0,062 500 ar	ds.iteb.ai)	± 16	
14	0,071 429	± 11		
13ttps://stand	ards.itch.al/catalog/stan	ards/sist/174c32bf-95	5f-46aa-9eq0-	
12	0,083(833d57e8	/iso-15872-2002	_ 14	
11	0,090 909	+ 0	± 13	
10	0,100 000	± 9	± 12	
9	0,111 111			
8	0,125 000		± 11	
7	0,142 857			
6	0,166 667	± 8		
5	0,200 000		+ 10	
4,5	0,222 222		÷ 10	
4	0,250 000			
^a See Figure 14.				