TECHNICAL ISO/IEC
REPORT TR
15942

First edition
2000-03-01

Information technology — Programming
languages — Guide for the use of the Ada
programming language in high integrity
systems

Technologies de l'information — Langages de programmation — Guide
pourd'emploi dulangage deprogrammation Ada dans les systémes de
haute'intégrité

Reference number
ISO/IEC TR 15942:2000(E)

© ISO/IEC 2000

ISO/IEC TR 15942:200(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 7341079

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2000 — All rights reserved

ISO/IEC TR 15942:2000 (E)

Contents
1 ST ol o] o1 OO PP PPPTPPRPPN 1
1.1 R AT T LT TSI o 1= 1
1.2 L 11 0 T 0 o1 2
2 Verification TECHNIGUESoiiiiiii ettt e e riee teesbeeeesabreeesanneeas 2
2.1 LI T == o 1 1 2
2.2 REVIBWS ...ttt e oottt e e e e o bbbttt e e e e e s bbb be et e e e e e e e bbb beeeeee feeeeeeeeaaennrreeeeeeaaaaans 3
2.3 N T Y2 L 3
2.3.1 CONLrol FIOW @NAIYSISuuueee s s aeeeeaaeeaeaaaaaaaas 4
2.3.2 Data FIOW @nNalYSISccieieieieieeeceie e aeeeeeeeeeeaeaeaaaaan 4
2.3.3 Information FIOW @nalySiS 4
P B Y] 41 o Yo ol =T o U o) o 4
2.3.5 FOrmal Code VEerifICAtIONoiiieiiiiiie ettt e et e e e e e e s e e s aeeeainreneeeeeas 5
2.3.6 RanNge CheCKiNg ..o . 6
2.3.7 Stack USAQE @NAIYSIS.......cccviiiiiiiiiieie e 6
PG Tt T T 0 01T o Y = 1 YA £ 6
2.3.9 Other Memory USAQE @NalYSISccoeieieeeiiiiiiiiiiiiiiei s snsnnnnsnnnnnnnnnnns aeeeeeeeeas 6
2.3.10 ODbJect COUE ANAIYSIScce e s 7
2.4 Testing............3. b .S LA NI A RREI). PED LN IR NA e e, 7
241 PrINCIPIES .. e —————— 7
2.4.2 Requirements-based Testing . o 1 L o ol G L L G e e 7
G T {010 L] = 0 F= LY=o I 1 o 8
25 Use of Verification Techniques in.this Technical REPOIt...........coiiiiiiiiiiiii e 8
3 General Language ISSUES aekarets: iteh ik ko atassard st o L aoe ShdedtndoaddfeaBid e emrreeeamne commreeessnneeesnnns 9
3.1 Writing Verifiable Programsi(ic. 26 0a0e0: e im L0 el e eeenennnnnnn 9
3.1.1 Language Rules to Achieve Predictability...............ouuiiiiiiiiiiiiiiiiiieiiieieieeeieeeeeseseveveveveveaeeeeeaeseanenenees .10
3.1.2 Language RuUles to AIOW MOGEIING. aeees 10
3.1.3 Language Rules to FacCilitate TeSHNG.........eviiiiiiiiieiiiieieieieieeeieeeeevereeeseeesereseeesereeeesrsrererernrnrrrrrrrnre eeeees 11
3.1.4 PragmatiC CoNSIAEIAtIONSccciiiii e ereraaeaaa—. 12
G T T = g [o [N = Vo T3 =l o] g F= U g Tt =T 0 0= o) 12
3.2 The Choice Of LANQUAGE.ccoo i ees 13
4 Significance of Language Features for High INTEgIitycoouiiiiiiiiiiiiiie e 14
4.1 Criteria for Assessment of Language FEAtUIrESuuuuuiiiiiiiiiiii s 14
4.2 How to use this TeChNIiCal REPOIuuiiiiiiiiiiiiiiiiiiie i e e erebeeeeerereeererererarsrsrsrernrns w14
5 ASSESSMENt Of LANGUAJE FEATUIEScoiiuiiiiii ittt ettt et e e et e e s abneeees bbeeesanene 15
51 TYpPeS With StatiC AIIDULESovevieieiieieeeeeee ettt e e e e e e e e e e e eeerereeeeeeereeeeeees eesssssnnes 16
L0 I A Y 7= 1 U= o] o EO PO PPRPPTTPT 17
LT B [0 (=2 O PP PP PP PPPPPPPPPPPPPP 17
L0 R B 1 01T = o[PO PRPPTTO 17
5.2 D= Tol =T = 1A (o] £ 1S T TSP UPP T TOPPPPPPRPPN 17
LT R Y 7= 1 U= o] o EO PP PURPP RO 18
LT [0 (=2 P PP PPPPPPPPPPPPPPPP 18
LI B €1 01T - o[l TP PUPPPTRPP 18
5.3 Names, including Scope and ViSiDility..............uuuuiiiiiiiiiiiiiiiiiiiiirieieerieeeeeeeeeeeereeeeereeeree19
LR T R LY 7= 1 U= o] o EO PO PPRPPTTPP 19
Lo T2 [0 (=2 P PP PP P PP PPPPPPPPPP 19
LR TR B 1 01T =T o[PP PPRPPTTPP 20
54 EXPIrESSIONS ..o e —— 20
L R Y= 1 U= (o] o EO PP PURPPTTOT 21
L N[0 (= ST OUPPURPP TP 21
L B 1 01T =T o[l PP URPPTTOP 22

© ISO/IEC 2000 - All rights reservedii

ISO/IEC TR 15942:2000 (E)

iv5.5 STALEIMENES .. vvveieeeeeeeeee e e e ettt e e e ettt e e e et e e e e e e etaee e e s setaeeeeseaeeeeeeas ©.ISQI/IEC.2000 - All.rights.reservedz2
Lo T R AV 7= 11U - 1 oY o PPN 23
LS T8 T2 N) (= 23

ISO/IEC TR 15942:2000 (E)

ForewordISO (the International Organization for Standardization) and IEC (the International Electrote
specialized system for worldwide standardization. National bodies that are members of ISO or I
development of International Standards through technical committees established by the respective o
particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mi
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take |

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a jointtechnical committee, IS
International Standards adopted by the technical committees are circulated to the member bodies for v
International Standard requires approval by at least 75 % of the member bodies casting a vote.

In exceptional circumstances, when a technical committee has collected data of a different kind from
published as an International Standard ("state of the art", for example), it may decide by a simple
participating members to publish a Technical Report. A Technical Report is entirely informative in nature
be reviewed until the data it provides are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this Technical Report may be the subje
and IEC shall not be held responsible’foridentifyinglany ar all'such patent rights.

ISO/IEC TR 15942 was prepared> by ‘Joint ‘Technical ‘Committee ISO/IEC JT@fdrmation technology
SC 22,Programming languages, their environments and system software interfaces

© ISO/IEC 2000 - All rights reserved v

ISO/IEC TR 15942:2000 (E)

IntroductionAs a society, we are increasingly reliant upon high integrity systems: for safety systems (s
security systems (to protect digital information) or for financial systems (e.g., cash dispensers). As the
systems grows, so do the demands for improved techniques for the production of the software components

These high integrity systems must be shown to be fully predictable in operation and have all the propert
This can only be achieved by analysing the software, in addition to the use of conventional dynamic testing

There is, currently, no mainstream high level language where all programs in that language are guaranteec
analysable. Therefore for any choice of implementation language it is essential to control the ways that the
the application.

The Ada language [ARM] is designed with specific mechanisms for controlling the use of certain aspe:
Furthermore,

1. The semantics of Ada programs are well-defined, even in error situations. Specifically, the
can be predicted from the language definition with few implementation dependencies or ir
language features.

2. The strong typingwithin" the\language can bejused|to reduce the scope (and cost) of ar
properties.

3. The Ada language has been successfully used on many high integrity applications. Thi
validated Ada compilers have the quality required for such applications.

4. Guidance can be provided to facilitate 'the use'of the language and to encourage the deve
further verification.

Ada is therefore ideally suited for implementing high integrity software and this document provides guid:
that are required on the use of Ada to ensure that programs are predictable and analysable.

All language design balances functionality against integrity. For instance, the ability to control storage all
impact the need to ensure the integrity of data. An aspect of the integrity of Ada programs is the possibilit
types (references) completely, whereas in other languages references are linked to array accessing anc
and therefore cannot be excluded.

There are a number of different analysis techniques in use for high integrity software and this documer
about which techniques to use. Furthermore, each analysis technique requires different controls on the use
assists analysis: for instance, the modes of Ada parameters, suitably used, provide information for date
other languages cannot always provide. This Technical Report, therefore, catalogues specific verification
and classifies the impact that language features have on the use of these techniques (in the tables in Secti

It is the user's responsibility to select the analysis techniques for a particular application; this document
define the full set of controls necessary for using that set of techniques.

The guidance given here first specifies its scope, by reference to the safety and security standards to
applications may be written.

Section 2 then analyses the verification techniques that are applied in the development of high integri
means, the regulatory rules of the standards for safety and security are abstracted to avoid the need

standard separately.
vi © ISO/IEC 2000 - All rights reserved

Section 3 addresses general issues concerning how computer languages must be constructed if pre
lanaiiane are to he fiillhys nredictahle Theace iccrinace are raleavvant to anv rectricted lanadiriane defined thrarinh

ISO/IEC TR 15942:2000 (E)

Section 4 provides identification of a three-way classification system used for Ada language features. This classification i
based upon the ease with which verification techniques can be applied to a program containing the feature. This classificatit
is needed since while the majority of the core features in Ada assists verification, the use of certain features makes the resulti
code difficult or impossible to analyse with the currently available program analysis tools and techniques.

Section 5 provides the main technical material of this Technical Report by classifying Ada language features. Users of thi
Technical Report can then determine which features of Ada are appropriate to use from the verification techniques that are
be employed. The assessment has shown that the vast majority of the Ada features lend themselves to effective use in
construction of high integrity systems.

The Technical Report concludes, in Section 6, by providing information to aid the choice of a suitable Ada compiler togethe
with its associated run-time system.

References to relevant standards and guides are provided. A detailed analysis of Ada95 for high integrity systems is availal
in References [CAT1, CAT2] and [CAT3].

A comprehensive index is provided to ease the use of the Technical Report.

Levels of criticality

Many of the Standards to which high integrity software is written use multiple levels to classify the criticality of the software
components which make up the system. While the number and nature of the levels vary, the general approach is always
same: the higher the criticality of the system, the more verification techniques need to be used for its assurance. Table 1 rela
the various levels of classification used in some well known International Standards.

Table 1: Levels of criticality in some Standards

Standard Number of levels Lowest Level Highest Level
[DO-178B] 4 D A
[IEC-61508] 4 Safety Integrity Level 1 Safety Integrity Level 4
[ITSEC] 7 EO E6

This Technical Report emphasizesthe. higher:levels:oficriticality; forbwhich’ theomoreldemanding verification techniques are
employed and for which Ada provides major-bénefits:

This Technical Report, however, does not directly use any such levels but focuses on the correlation between the features of
language and the verification techniques to be employed at the higher levels of criticality. The material in [|ISGOEE],

[DS 00-56], [ARP 4754] and [ARP 4761] may be useful in determining the criticality of a system if this is not covered by
application-specific standards.Readership

This Technical Report has been written for:
1. Those responsible for coding standards applicable to high integrity Ada software.
2. Those developing high integrity systems in Ada.

3. Vendors marketing Ada compilers, source code generators, and verification tools for use
in the development of high integrity systems.

4. Regulators who need to approve high integrity systems containing software written in
Ada.

5. Those concerned with high integrity systems who wish to consider the advantages of
using the Ada language.

This Technical Report is not a tutorial on the use of Ada or on the development of high integrity software. Developers usin
this report are assumed to have a working knowledge of the language and an understanding of good Ada style, as in [AQS].

© ISO/IEC 2000 - All rights reserved vii

ISO/IEC TR 15942:2000 (E)History

When proposals were made that a subset of Ada should be specified for high integrity applications, it was realized that the
provision of the Safety and Security Annex in the Ada standard did not satisfy all the requirements of the developers of high
integrity systems. In consequence, a group was formed under WG9 to consider what action was needed. This group, called the
HRG, proposed and drafted this Technical Report over a three year period.

Conventions

In line with the Ada standard, the main text is in a Roman font. Ada identifiers are set in a sans-serif font, and the Ada
keywords in a bold sans-serif font.

Postscript

The guidance provided here reflects the understanding of the issues based mainly on using the previous Ada standard ir
developing high integrity applications. Over the next few years, the current Ada standard will be used for further high integrity
applications which will no doubt need to be reflected in a revision of this guidance. Specifically, further detail can be produced
based upon the experience gained.

Instructions for comment submission

Informal comments on this Technical Report may be sent by e-mail to hrg@cise.npl.co.uk. If appropriate, the project editor will
document the issue for corrective action.

Comments should use the following format:

ltopic: Title which is a summary. indone-'sentence
Ireference TR 15942- SS.5S.5S

Ifrom Author, Name, yy-mm-dd

lkeywords keywords related to topic

ldiscussion

text of discussion

wheress.ss.s$s the section numberyy-mm-ddis the date. If the comment requests a change, a rationale for this and the
substance of the actual change proposed would facilitate the processing of the comment.

vii © ISO/IEC 2000 - All rights reserved

TECHNICAL REPORTISO/IEC TR 15942:2000 (E)

Information technology - Programming languages - Guide for the
use of the Ada programming language in high integrity systems

1 Scope

This Technical Report provides guidance on the use of Ada when producing high integrity systems. In producing sucl
applications it is usually the case that adherence to guidelines or standards has to be demonstrated to independent boc
These guidelines or standards vary according to the application area, industrial sector or nature of the risk involved.

For safety applications, the international generic standard is [IEC 61508] of which part 3 is concerned with software.
For security systems, the multi-national generic assessment guide is [ISO CD 15408].
For sector-specific guidance and standards there are:

Airborne civil avionics: [DO-178B]

Nuclear power plants [IEC 880]

Medical systems[IEC 601-4]

Pharmaceuticat [GAMP]
For national/regional guidance ‘and standards there are the following:

UK Defence [DS 00-55]

European rail: [EN 50128]

European security. [ITSEC]

US nuclear. [NRC]

UK automotive: [MISRA]

US medical [FDA]

US space[NASA]

The above standards and guides are referred to as Standards in this Technical Report. The above list is not exhaustive
indicative of the type of Standard to which this Technical Report provides guidance.

The specific Standards above are not addressed individually but this Technical Report is synthesized from an analysis of th
requirements and recommendations.

1.1 Within the scope

This Technical Report assumes that a system is being developed in Ada to meet a standard listed above or one of a sim
nature. The primary goal of this Technical Report is to translate general requirements into Ada specific ones. For example,
general standard might require that dynamic testing provides evidence of the execution of all the statements in the code of t
application. In the case of generics, this is interpreted by this Technical Report to mean all instantiations of the generic shou
be executed.

© ISO/IEC 2000 - All rights reserved 1

This Technical Report is intended to provide
identifies verification and validation issues

standards being employed.
ISO/IEC TR 15942:2000 (E)

The following topics are within the scope of tl
¢ the choice of features of the lan
¢ identification of language featur
e the use of tools to aid design ar
e issues concerning qualification
e tools, such as graphic design to

Tools which generate Ada source code req
verification of the extensions and overall sy:s
modification is not planned, inspection and a
‘qualified’ according to an applicable standa
verification process may be made more co
analysis. Potential users of such tools shot
Report.

1.2 Out of scope

The following topics are considered to he out of/scope with respect to this Technical'Report:
e Domain-specific standards,
e Application-specific issues,
e Hardware and systemtspecific issues;

e Human factor issues in the application (as opposed to human factors in the use of thedigeggawhich is in
scope).

2 Verification Techniques

Verification is the confirmation by examination and provision of objective evidence that specified requirements have been
fulfilled [ISO 8402: 2.18] .

There are currently four approaches required by applicable standards and guidelines (see Section 7.1) to support the
verification of software:

1. traceability,
2. reviews,
3. analysis, and
4. testing.

Each one of these is discussed below. Where appropriate, language-specific techniqueppitrdtesich approach are
discussed. Finally, these techniques are grouped into categories that can form a basis for the analysis of Ada language feature:
This analytical approach forms the basis for the assessment presented in Section 5.

2.1 Traceability

Traceability is required to establish that the implementation is complete, and to identify new derived requirements. It occurs
throughout the life cycle, e.g., there needs to be traceability from:

© ISO/IEC 2000 - All rights reserved2

ISO/IEC TR 15942:2000 (E)

 (or detract from)
quirement, which has
ther hand, if there is a
es or test procedures),
traneous code) may

1at require extensive
he object code.

2.2 Reviews

Reviews are an important part of the verification process. They can be carried out on requirements, design, code, te
procedures, or analysis reports. Reviews are conducted by humans and may be undertaken ‘formally such as in a Fag
inspection [11] or ‘informally’ such as in desk checks. Typically, reviews are done by an ‘independent’ person i.e., the
producer of the artefact is different from the reviewer. This independence is a mandatory requirement of safety-critice
software standards.

Coding standards and avoidance of certain language features of high-level languages are essential for high integrity system:
order to facilitate reviews. These aspects become important since the ‘independent’ code review may at times be conducted
an expert in the application damain whomay/not have detailed insight into'language’/constructs and their interactions.

There is a distinct tradeoff between the uselofllahguage featurestocapture design inteppanidadistraction versus the need

for simplicity and predictability. This document leaves to coding guidelines, such as the Ada Quality and Style Guide [AQS],
software engineering issues such as those concerned with readability and reusability. Those issues that are associated
guantifiable analysis are considered. in the following sections.

2.3 Analysis

This Technical Report distinguishes between analysis (i.e., static analysis) and testing (i.e., dynamic analysis). Analys
supplements testing to establish that the requirements are correctly implemented.

Analysis can be performed on requirements, design, or code; the major emphasis of this Technical Report is the analysis of
design and code.

Described below are ten analysis methods which are required in different combinations by various standards.
1. Control Flow
2. Data Flow
3. Information Flow
4. Symbolic Execution
5. Formal Code Verification
6. Range Checking
7. Stack Usage
8. Timing Analysis
9. Other Memory Usage

10. Object Code Analysis

© ISO/IEC 2000 - All rights reserved3

2.3.1 Control Flow analysis
ISO/IEC TR 15942:2000 (E)
Control Flow analysis is conducted to
1. ensure that code is executed in

2. ensure that code is well structul

w

locate any syntactically unreact

B

highlight the parts of the code w

Call tree analysis, an example of one of tl
sequencing stated by the design is correctly
which are prohibited by most high integrity st
then the call tree analysis can confirm that th

Ada is rich in facilities for program flow cor

for loop control
variables, make it difficult to produce poorly structured Ada code. Ifdh® statement is not used and relatively minor
restrictions are made on placemenesit andreturn statements, Ada code becomes inherently well structured.

2.3.2 Data Flow analysis

The objective of Data Flow analysis is to show that there is no execution path in the software that would access a variable that
has not been set a value. Data Flow analysis uses the results of Control Flow Analysis in conjunction with the read or write
access to variables to perform the analysis. 'Datal Flow analysis can also' detect'other code anomalies such as multiple write:
without intervening reads.

In most general-purpose languages, Data Flow analysis is a complex activity, mainly because global variables can be accesse
from anywhere, and because subprogram parameters do-not sepportly modes. The job can be made significantly easier
in Ada which has packages to contain potentially shared datagwnmiode parameters on.subprograms.

2.3.3 Information Flow analysis

Information Flow analysis identifies how execution of a unit of code creates dependencies between the inputs to and outputs
from that code. For example:

X = A+B;
Y = D-C;
if X>0 then

Z:=(Y+1);
end if;

Here, X depends o\ andB, Y depends o€ andD, andZ depends o\, B, C, andD (and implicitly on its own initial value).

These dependencies can be verified against the dependencies in the specification to ensure that all the required dependenci
are implemented and no incorrect ones are established. It can be performed either internal to a module (i.e., a procedure or ¢
function), across modules, or across the entire software (or system). This analysis can be particularly appropriate for a critical
output that can be traced back all the way to the inputs of the hardware/software interface.

2.3.4 Symbolic Execution

The objective of Symbolic Execution is to verify properties of a program by algebraic manipulation of the source text without
requiring a formal specification. This technique is typically applied using tools that also undertake Control Flow, Data Flow
and Information Flow analysis.

Symbolic Execution is a technique where the program is ‘executed’ by performing back-substitution; in essence, the right hand

side of each assignment is substituted for the left hand side variable in its subsequent uses. This converts the sequential logi
into a set of parallel assignments in which output values are expressed in terms of input values. Conditional branches are
represented as conditions under which the relevant expression gives the values of the outputs from the inputs. To undertake thi

© ISO/IEC 2000 - All rights reserved4

entity and that
“these conditions.

ISO/IEC TR 15942:2000 (E)

< 0

X = A+B

Y = D-C

Z = not defined on this path (retains initial value)
A+B >0

X = A+B

Y = D-C

Z = D-C+1

These algebraic expressions give the output in terms of the input and can be compared (manually) with the specification of
subprogram to verify the code.

Symbolic Execution can also be used to assist with reasoning that run-time errors will not occur (e.g., Range Checking). Tt
Symbolic Execution model is extended to include expressions indicating the conditions under which a run-time error ma
occur. If these expressions are mutually contradictory for a particular execution path then that path is free from potential rut
time errors. In the above example Zfhas an upper declared bound of 10, then we have the condition #aBi#0, thenD-
C+1<11 to avoid raising the exception on the upper bound.

2.3.5 Formal Code Verification

Formal Code Verification is the process ofjproving that the code of a program is-correct with respect to the formal specificatio
of its requirements. The objectiveis to’explore all possible progranm executions;‘which is infeasible by dynamic testing alone.

Each program unit is verified separately,-against-those"parts of-the* Specification that apply to it. For instance, Formal Coc
Verification of a subprogram involves proving that its code is consistent with its formally-stated post-condition (specifying the
intended relationships between variables on termination), given(its) pre-condition (specifying the conditions which must appl
when the subprogram is called):t/A:more restricted proof @imed at-demonstrating-acparticular safety/security property can al
be constructed.

The verification is usually performed in two stages:

1. Generation of Verification Conditions (VCs). These theorems are proof obligations, whose truth implies that if
the pre-condition holds initially, and execution of the code terminates, then the post-condition holds on
termination. These VCs are usually generated mechanically.

2. Proof of VCs. Machine assistance in the form of a suitable proof tool can be used to discharge verification
conditions.

The process outlined above establisipastial correctness To establishtotal correctnessit is also necessary to prove
terminationof all loops when the stated pre-condition holds and termination of any recursion. Recursion is not normally
permitted in high integrity systems. Termination is usually demonstrated by exhibitiagamt expression for every loop, and
showing that this expression gives a non-negative number that decreases on each itd@tinimation conditioncan be
generated and proved, similarly to the generation and proof of verification conditions.

The value of Formal Code Verification depends on the availability of a specification expressed in a suitable form such a
results from formal specification methods. Formal methods involve the use of formal logic, discrete mathematics, an
computer-readable languages to improve the specification of software.

Proof of absence of run-time errors

In some real-time high integrity systems, occurrence of run-time errors is not acceptable. An example is the flight-contro
system of a dynamically unstable aircraft, in which there would not be time to recover from such an error. The techniques ¢
Formal Code Verification described above can be used to prove that (with appropriate language constraints) certain classes
run-time errors, e.g., range constraint violations, cannot arise in any execution.

To perform such verifications, the object type and variable declarations are used to construct pre-conditions on the ranges
initial values, and at each place in the source code where a run-time check would be produced, an assertion formally describi

© ISO/IEC 2000 - All rights reserved5

ISO/IEC TR 15942:2000 (E)

the check is generated. From these pre-co
produced.

These verifications (or ‘proof obligations’) at
formal requirement specifications are not ne

2.3.6 Range Checking

The objective of this analysis is to verify tt
accuracy. These forms of analysis include, b

1. overflow and underflow analysi:
2. rounding errors,

3. range checking, and

4. array bounds.

For discrete types, the static bounds plac
enumerated types are used instead of inte
absence of overflow is more demanding thar

Since the semantics of Ada remain defin
Furthermore, thévalid attribute makes it strai
external to the program, is a legal Ada value

2.3.7 Stack Usage analysis

The stack is a part of the memory shared by
data;and return addresses generated by the
establishes the maximum possible size of tt
support this maximum stack size. Also, son
stack.

Another aspect of Stack Usage analysis is t
when dynamic heap allocation is prohibited.

Stack Usage analysis is made simpler for a
are unambiguous, and where there is a clea
Security Annex provide the necessary inforn

2.3.8 Timing Analysis

The overall objective of this analysis is to
important aspect of this analysis is the worst

Certain programming language features or
bounds and the manipulation of dynamic dat

The static typing of Ada and the unambiguc

pragma

Reviewable and pragma Inspection_Point ensure that there is traceability from the source code to the object code to

facilitate timing analysis.

2.3.9 Other Memory Usage analysis

This analysis is required for any resource that is shared between different ‘partitions’ of software. These forms of analysis
include, but are not limited to, memory (heap), I/O ports, and special purpose hardware, that perform specific computations or

watchdog timer functions.

Other Memory Usage analysis will show the absence of interference between Ada and other components such as low-level anc

hardware device drivers and resource managers.

In particular heap memory should usually be avoided and IO devices

rigorously partitioned. Ada is particularly useful when doing such analysis singedbma Restrictions (No_Allocators) can

© ISO/IEC 2000 - All rights reserved6

ISO/IEC TR 15942:2000 (E)

pragma Restrictions (No_Implicit_Heap_Allocation) to ensure no implicit
usage of the heap.

2.3.10 Object Code Analysis

The purpose of Object Code Analysis is to demonstrate that object code is a correct translation of source code and that err
have not been introduced as a consequence of a compiler failure.

This analysis is sometimes undertaken by manual inspection of the machine code generated by the compiler. The compi
vendor may provide details of the mapping from the source code to object code so that manual checks are simpler to underta
Unfortunately, it is not currently within the state of the art to formally verify the equivalence of source code and the generate
object code.

The Adapragma Reviewable provides basic information to assist in tracing from source code to object cBdiyma
Inspection_Point can be used to determine the exact status of variables at specific points. For the requirements of such ¢
analysis, see [15].

2.4 Testing
2.4.1 Principles

Testing (sometimes known as dynamic analysis) is the execution of software on a digital computer, which is often the targ
machine on which the final application runs. Testing has the advantage of providing tangible, auditable, evidence of softwal
execution behaviour [14].

There are many testing techniques and new ones are being invented continually. This section is limited to those procedures t
are required by various software, standardst It is)not intended to be ‘an| exhaustive encyclopaedia of the various testi
techniques known at the present time.

Testing can be performed at various levels of software (and system):
o Software module level (individual‘procedures or-functions),
e Software integration testing (i:e’, module/integration‘tésting),
e Hardware/Software integration testing, and
e System testing.

The testing procedures described below focus on the first two aspects, i.e., module and module integration testing, since f
choice of programming language has a direct impact on the ease or difficulty of testing. Within this framework, there are twe
basic forms of testing:

¢ Requirements-based (or black-box) Testing, and
e Structure-based (or white-box) Testing.

Since exhaustive testing is infeasible for any realistic program, one approach is to partition the data domain into equivalen
classes and their boundary values in order to limit the number of test cases.

2.4.2 Requirements-based Testing

The Requirements-based Testing methods aim to show that the actual behaviour of the program is in accordance with
requirements. For this reason, these methods are sometimes also called ‘functional testing’ or ‘black-box testing’. This is
highlight the fact that the program structure is not taken into account. There are two common methods for conductin
Requirements-based Testing:

Equivalence class testing

The inputs and outputs of the component [BS 7925-1: 3.42] under test are divided into equivalence classes in which the valu
within one class can reasonably be expected to be treated by the component in the same way. The equivalence class
numeric data is a range having the same sign or zero. For data of an enumerated type, each value usually forms a class, s
each value could be expected to be treated differently. For composite types, the equivalence classes are obtained by combir

© ISO/IEC 2000 - All rights reserved?

	¸ı¹⁄îkƒBñÃ¼k\^1-¸˝Ìç);ç}ł€j½gC‘&¥�fÃÛìÖ¦Ù�îâo/ÕÃ±ô¨]Šgá/9F~9È¯Ð¸òË�§•˙ˆ�‹Š®Lwl&ˆu!~É*lælA®�¢

