

INTERNATIONAL
STANDARD

ISO
16032

First edition
2004-09-15

**Acoustics — Measurement of sound
pressure level from service equipment in
buildings — Engineering method**

*Acoustique — Mesurage du niveau de pression acoustique des
équipements techniques dans les bâtiments — Méthode d'expertise*

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 16032:2004](#)

<https://standards.iteh.ai/catalog/standards/iso/e7a6a8c4-abdc-448a-86a6-754981b9758e/iso-16032-2004>

Reference number
ISO 16032:2004(E)

© ISO 2004

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh Standards

(<https://standards.iteh.ai>)

Document Preview

[ISO 16032:2004](#)

<https://standards.iteh.ai/catalog/standards/iso/e7a6a8c4-abdc-448a-86a6-754981b9758e/iso-16032-2004>

© ISO 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 16032 was prepared by the European Committee for Standardization (CEN) in collaboration with Technical Committee ISO/TC 43, *Acoustics*, Subcommittee SC 2, *Building acoustics*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Throughout the text of this document, read "...this European Standard..." to mean "...this International Standard...".

Document Preview

[ISO 16032:2004](#)

<https://standards.iteh.ai/catalog/standards/iso/e7a6a8c4-abdc-448a-86a6-754981b9758e/iso-16032-2004>

Contents

	page
Foreword	v
Introduction	vi
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Instrumentation	4
5 Test method – General	5
6 Measurement procedure	6
7 Measurement of reverberation time	8
8 Correction for background noise	8
9 Precision	9
10 Test report	9
Annex A (normative) <i>A</i> -weighting and <i>C</i> -weighting correction value.....	11
Annex B (normative) Operating conditions and operating cycles for measuring the maximum sound pressure level and the equivalent continuous sound pressure level <i>can</i>	12
Bibliography	19

Document Preview

[ISO 16032:2004](#)

<https://standards.iteh.ai/catalog/standards/iso/e7a6a8c4-abdc-448a-86a6-754981b9758e/iso-16032-2004>

Foreword

This document (EN ISO 16032:2004) has been prepared by Technical Committee CEN/TC 126 "Acoustic properties of building products and of buildings", the secretariat of which is held by AFNOR, in collaboration with Technical Committee ISO/TC 43 "Acoustics".

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by March 2005, and conflicting national standards shall be withdrawn at the latest by March 2005.

This document includes a Bibliography.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 16032:2004](#)

<https://standards.iteh.ai/catalog/standards/iso/e7a6a8c4-abdc-448a-86a6-754981b9758e/iso-16032-2004>

Introduction

This document specifies the engineering method for the measurement of sound pressure level from service equipment in buildings. For use of this document measurements are performed under specified operation conditions and operating cycles. Such conditions are given in Annex B.

The operating conditions and operating cycles given in Annex B are only used if they are not opposed to national requirements and regulations.

iTeh Standards (<https://standards.iteh.ai>) Document Preview

[ISO 16032:2004](#)

<https://standards.iteh.ai/catalog/standards/iso/e7a6a8c4-abdc-448a-86a6-754981b9758e/iso-16032-2004>

1 Scope

This document specifies methods for measuring the sound pressure level from service equipment in buildings installed to building structures. This document covers specifically measurements of sanitary installations, mechanical ventilation, heating and cooling service equipment, lifts, rubbish chutes, boilers, blowers, pumps and other auxiliary service equipment, and motor driven car park doors, but can also be applied to other equipment attached to or installed in buildings.

The methods are suitable for rooms with volumes of approximately 300 m³ or less in e.g. dwellings, hotels, schools, offices and hospitals. The standard is not in general intended for measurements in large auditoria and concert halls. However, the operating conditions and operating cycles in Annex B can be used in such cases.

The service equipment sound pressure level is determined as the maximum *A*- weighted and optionally *C*- weighted sound pressure level occurring during a specified operation cycle of the service equipment under test, or as the equivalent continuous sound pressure level determined with a specified integration time. *A*-weighted and *C*- weighted values are calculated from octave-band measurements.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 60942, *Electroacoustics — Sound calibrators* (IEC 60942:2003).

EN 61260, *Electroacoustics — Octave-band and fractional-octave-band filters* (IEC 61260:1995).

EN 61672-1, *Electroacoustics - Sound level meters - Part 1: Specifications* (IEC 61672-1:2002).

EN 61672-2, *Electroacoustics - Sound level meters - Part 2: Pattern evaluation tests* (IEC 61672-2:2003).

EN ISO 3382, *Acoustics - Measurement of the reverberation time of rooms with reference to other acoustical parameters* (ISO 3382:1997).

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

sound pressure level

L
ten times the logarithm to the base 10 of the ratio of the square of the sound pressure, $p^2(t)$, to the square of the reference sound pressure p_0^2 , measured with a particular time weighting and a particular frequency weighting, selected from those defined in EN 61672-1. It is expressed in decibels. The reference sound pressure is 20 µPa

**3.2
average sound pressure level**

$$\bar{L} = 10 \lg \left(\frac{\sum_{i=1}^n 10^{0.1 \times L_i}}{n} \right) \text{dB} \quad (1)$$

where

L_i is the sound pressure level at different microphone positions, in decibels, to be averaged

3.3

A - weighted sound pressure level calculated from octave-band values in the frequency range 63 Hz to 8 000 Hz

L_A

$$L_A = 10 \lg \sum_{i=1}^n 10^{0.1(L_i + A_i)} \text{dB} \quad (2)$$

where

L_i is the sound pressure level in octave-band i , and A_i is the A -weighting correction for octave-band i (see Annex A). The value of L_i depends on the measurements, but can be all the parameters of 3.6

**3.4
 C - weighted sound pressure level calculated from octave-band values in the frequency range 31,5 Hz to 8 000 Hz**

L_C

$$L_C = 10 \lg \sum_{i=1}^n 10^{0.1(L_i + C_i)} \text{dB} \quad (3)$$

<https://standards.iteh.ai/catalog/standards/iso/e7a6a8c4-abdc-448a-86a6-754981b9758e/iso-16032-2004>

where

L_i is the sound pressure level in octave-band i , and C_i is the C -weighting correction for octave-band i (see Annex A). The value of L_i depends on the measurements, but can be all the parameters of 3.6

3.5**sound exposure level** **L_E**

the sound exposure level of a sound event is given by the formula:

$$L_E = 10 \lg \frac{1}{t_o} \int_{t_1}^{t_2} \frac{p^2(t)}{p_o^2} dt \quad \text{dB} \quad (4)$$

where

 $p(t)$ is the instantaneous sound pressure in Pascals; $t_2 - t_1$ is a stated time interval long enough to encompass all significant sound of a stated event, in seconds; p_o is the reference sound pressure (20 μPa); t_o is the reference duration ($t_o = 1 \text{ s}$)**3.6****service equipment sound pressure level in octave-bands in the frequency range 31,5 Hz to 8 000 Hz**

in the following subclauses 3.6.1 to 3.6.9 are defined the octave-band values which can be measured according to this document. See also Clause 5, Table 1

ITEH Standards
(<https://standards.iteh.ai>)
Document Preview

3.6.1 **$L_{S \max}$**

maximum sound pressure level in octave-bands determined with time weighting "S"

3.6.2 **$L_{S \max, nT}$**

maximum sound pressure level in octave-bands determined with time weighting "S" and standardized to a reverberation time of 0,5 s (3.8, equation (5))

<https://standards.iteh.ai/cda/0g/standards/iso/e7a6a8c4-abdc-448a-86a6-754981b9758e/iso-16032-2004>**3.6.3** **$L_{S \max, n}$** maximum sound pressure level in octave-bands determined with time weighting "S" and normalized to an equivalent sound absorption area of 10 m^2 (3.8, equation (6))**3.6.4** **$L_{F \max}$**

maximum sound pressure level in octave-bands determined with time weighting "F"

3.6.5 **$L_{F \max, nT}$**

maximum sound pressure level in octave-bands determined with time weighting "F" and standardized to a reverberation time of 0,5 s (3.8, equation (5))

3.6.6 **$L_{F \max, n}$** maximum sound pressure level in octave-bands determined with time weighting "F" and normalized to an equivalent sound absorption area of 10 m^2 (3.8, equation (6))**3.6.7** **L_{eq}**

equivalent continuous sound pressure level in octave-bands

3.6.8 **$L_{eq, nT}$**

equivalent continuous sound pressure level in octave-bands standardized to a reverberation time of 0,5 s (3.8, equation (5))

3.6.9 **$L_{eq, n}$**

equivalent continuous sound pressure level in octave-bands normalized to an equivalent sound absorption area of 10 m² (3.8, equation (6))

3.7**reverberation time** **T**

time that would be required for the sound pressure level to decrease by 60 dB after the sound source has stopped. It is expressed in seconds

3.8**standardized/normalized sound pressure level**

the measured sound pressure levels in octave-bands can be standardized to a reverberation time of 0,5 s or normalized to an equivalent sound absorption area of 10 m². The equations (5) and (6), respectively, are used

$$L_{nT} = L - 10 \lg \frac{T}{T_0} \quad \text{dB} \quad (5)$$

where

iTeh Standards

<https://standards.iteh.ai>

Document Preview

ISO 16032:2004

$$L_n = L - 10 \lg \frac{A_0 T}{0,16 V} \quad (6)$$

where

L can be L_S max, L_F max, L_{eq} ;

T is the measured reverberation time in seconds;

V is the room volume in cubic metres;

A_0 is the reference equivalent sound absorption area in square metres; $A_0 = 10 \text{ m}^2$

0,16 has the unit $\left[\frac{s}{m} \right]$.

4 Instrumentation

Measurement of the maximum sound pressure level according to this document implies the use of an octave-band real-time frequency analyser. The analyser shall be able to read values of all octave-band sound pressure levels at the time when the maximum *A*-weighted or *C*-weighted sound pressure level occurs (during a specified operating cycle of the service equipment under test).