INTERNATIONAL STANDARD

ISO 8692

Second edition 2004-10-01

Water quality — Freshwater algal growth inhibition test with unicellular green algae

Qualité de l'eau — Essai d'inhibition de la croissance des algues d'eau douce avec des algues vertes unicellulaires

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 8692:2004 https://standards.iteh.ai/catalog/standards/sist/e19e490f-c46f-493c-8c62-831e90a3963a/iso-8692-2004

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 8692:2004 https://standards.iteh.ai/catalog/standards/sist/e19e490f-c46f-493c-8c62-831e90a3963a/iso-8692-2004

© ISO 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Cont	Contents		
Forew	ord	iv	
1	Scope	1	
2	Normative references	1	
3	Terms and definitions	1	
4	Principle	2	
5	Reagents and media	2	
6	Apparatus	4	
7	Procedure	5	
8	Validity criteria	7	
9	Calculation	8	
10	Expression of results	9	
11	Interpretation of results	9	
12	Precision iTeh STANDARD PREVIEW	9	
13	Test report(standards.iteh.ai)	10	
Annex	A (informative) Rapid screening of wastewater algal growth inhibition		
Bibliog	ISO 8692:2004 https://standards.iteh.ai/catalog/standards/sist/e19e490f-c46f-493c-8c62- 831e90a3963a/iso-8692-2004	15	

ISO 8692:2004(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 8692 was prepared by Technical Committee ISO/TC 147, Water quality, Subcommittee SC 5, Biological methods.

This second edition cancels and replaces the first edition (ISO 8692:1989), which has been technically revised. (standards.iteh.ai)

ISO 8692:2004 https://standards.iteh.ai/catalog/standards/sist/e19e490f-c46f-493c-8c62-831e90a3963a/iso-8692-2004

Water quality — Freshwater algal growth inhibition test with unicellular green algae

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This International Standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

This International Standard specifies a method for the determination of the growth inhibition of unicellular green algae by substances and mixtures contained in water or by wastewater. This method is applicable for substances that are easily soluble in water.

With modifications to this method, as described in ISO 14442 and ISO 5667-16, the inhibitory effects of poorly soluble organic and inorganic materials, volatile compounds, heavy metals and waste water can be tested.

A rapid algal growth inhibition screening test for wastewater is included in Annex A.

(standards.iteh.ai)

2 Normative references

ISO 8692:2004

The following referenced/sdocumentsalarealindispensable for 4 the application of this document. For dated references, only the edition cited applies a For and ated-references, the latest edition of the referenced document (including any amendments) applies.

ISO 5667-16:1998, Water — Sampling — Part 16: Guidance on biotesting of samples

ISO 14442:1999, Water quality — Guidelines for algal growth inhibition tests with poorly soluble materials, volatile compounds, metals and waste water

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

cell density

X

number of cells per unit volume of medium

NOTE Cell density is expressed in cells per millilitre.

3.2

specific growth rate

μ

proportional rate of increase in cell density per unit of time:

$$\mu = \frac{1}{x} \frac{dx}{dt}$$

ISO 8692:2004(E)

where

- is the cell density, expressed in cells per millilitre; x
- is the time, expressed in days t

NOTE Specific growth rate is expressed in inverse days (day⁻¹).

3.3

growth medium

mixture of water and nutrients in which algal cells are incubated, which is used for pre-cultures and controls

3.4

test sample

aqueous sample (e.g. wastewater), chemical substance or mixture for which the inhibitory effects on the growth of algae are determined

3.5

test medium

mixture of water, nutrients and test sample

3.6

test batch

mixture of water, nutrients and test sample (test medium 3.5), inoculated with algae

3.7

iTeh STANDARD PREVIEW

control

mixture of water, nutrients (growth medium 3.3) without test sample, inoculated with algae

3.8

effective concentration

ISO 8692:2004

https://standards.iteh.ai/catalog/standards/sist/e19e490f-c46f-493c-8c62-831e90a3963a/iso-8692-2004

concentration of test sample which results in a reduction of x % in the specific growth rate relative to the controls

NOTE To unambiguously denote an EC value deriving from growth rate it is proposed to use the symbol "ErC".

Principle

Monospecies algal strains are cultured for several generations in a defined medium containing a range of concentrations of the test sample, prepared by mixing appropriate quantities of growth medium, test sample and an inoculum of exponentially growing algal cells. The test batches are incubated for a period of (72 \pm 2) h during which the cell density in each test solution is measured at least every 24 h.

Inhibition is measured as a reduction in growth rate, relative to control cultures grown under identical conditions.

Reagents and media 5

- 5.1 **Test organism**, using either of the following planktonic fresh water algae species:
- Desmodesmus subspicatus¹⁾ (86.81 SAG). a)
- Pseudokirchneriella subcapitata (Korshikov) Hindak²⁾ (ATCC 22662, CCAP 278/4 or 61.81 SAG). b)

¹⁾ This species is formerly known as Scenedesmus subspicatus Chodat.

Both algae species are planktonic green algae belonging to the order of Chlorococcales (Chlorophyta, Chlorophyceae), and are usually unicellular in culture.

The strains recommended are available in unialgal, non-axenic cultures from the following collections³⁾.

— SAG: Collection of Algal Cultures

> Inst. Plant Physiology University of Göttingen Nikolausberger Weg 18 D-37073 Göttingen

Germany

ATCC: American Type Culture Collection

12301 Parklane Drive

Rockville

Maryland 20852

USA

CCAP: Culture Centre of Algae and Protozoa

Freshwater Biological Association

The Ferry House

Ambleside Teh STANDARD PREVIEW

Cumbria LA22 OLP (standards.iteh.ai)

United Kingdom

Algothèque du laboratoire de cryptogamie: https://standards.iteh.ai/catalog/standards/sist/e19e490f-c46f-493c-8c62-

Muséum National d'Histoire Naturelle iso-8692-2004

12. rue Buffon

75005 Paris

France

Stock cultures can be maintained in the medium described in 5.3. and 7.1. However, a frequent sub-culturing is necessary (once a week) to prevent failure of growth. The stock culture can be maintained for extended periods on richer algal media such as those recommended by the culture collection.

Alternatively algae can be stored for several months in alginate beads⁴), without losing their viability^[1]. The algae can be easily liberated from the algal beads when needed to perform the toxicity tests.

Water, deionized or of equivalent purity (conductivity < 10 µS/cm), for use in the preparation of the growth medium and test substance solutions.

Take special care to avoid contamination of the water by inorganic or organic substances during preparation and storage. Equipment made of copper shall not be used.

- 2) This species is formerly known as Selenastrum capricornutum Prinz. The new name is currently cited by culture collections.
- 3) Trade name of strains are examples of suitable strains available commercially. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of these products.
- 4) The algae beads supplied by MICROBIOTESTS Inc., Venecoweg 19, 9810 Nazareth, Belgium. Tel. (32) 9 380 8545, fax (32) 9 380 8546, e-mail microbiotests@skynet.be, are an example of a suitable commercially available product. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this product. Equivalent products may be used if they can be shown to lead to the same results.

3 © ISO 2004 - All rights reserved

5.3 Nutrients.

Prepare four nutrient stock solutions in water, according to the compositions given in Table 1.

These solutions are eventually diluted (see 7.1 and 7.4) to achieve the final nutrient concentrations in the test solutions. However, the macro-nutrients may instead be added directly to the water.

All chemicals used shall be of reagent grade quality.

Sterilize the stock solutions by membrane filtration (mean pore diameter 0,2 μ m) or by autoclaving (120 °C, 15 min). Store the solutions in the dark at 4 °C.

Do not autoclave stock solution 4 in order to avoid evaporative loss of NaHCO₃, but sterilize it by membrane filtration.

Table 1 — Mass concentrations of nutrients in the test solution

Stock solution	Nutrient	Mass concentration in stock solution	Final mass concentration in test solution		
	NH ₄ CI	1,5 g/l	15 mg/l		
	MgCl ₂ ·6H ₂ O	1,2 g/l	12 mg/l		
Stock solution 1: macro-nutrients	CaCl ₂ ·2H ₂ O	1,8 g/l	18 mg/l		
i	Teh MgSO ₄ -7H ₂ oDA	RD Pr,5 g/VIEV	15 mg/l		
	KH2PO4dard	ls.itel ^{0,1} 69 ⁷)	1,6 mg/l		
Stock solution 2: Fe-EDTA	FeCl ₃ ⋅6H ₂ O	64 mg/l	64 μg/l		
Stock solution 2. Fe-EDTA	Na ₂ EDTA·2H ₂ OO 869	<u>12:2004</u> 100 mg/l	100 μg/l		
https/	standards.iteh avcatalog/standa H ₃ BO ₃ 833 _e 90a3963a/	irds/sist/e19e490f-c46f-493c-8 185 mg/l iso-8692-2004	^{C62-} 185 μg/l		
	MnCl ₂ ·4H ₂ O	415 mg/l	415 μg/l		
Stock solution 3: trace elements	ZnCl ₂	3 mg/l	3 µg/l		
Stock solution 3. trace elements	CoCl ₂ ⋅6H ₂ O	1,5 mg/l	1,5 µg/l		
	CuCl ₂ ·2H ₂ O	0,01 mg/l	0,01 µg/l		
	Na ₂ MoO ₄ ·2H ₂ O	7 mg/l	7 μg/I		
Stock solution 4: NaHCO ₃	NaHCO ₃	50 g/l	50 mg/l		
a H ₃ BO ₃ can be dissolved by the addition of 0,1 mol/l NaOH.					

6 Apparatus

All equipment that comes in contact with the test medium shall be made of glass or other chemically inert material.

Standard laboratory apparatus and the following.

6.1 Temperature-controlled cabinet or room, with a white fluorescent light, providing continuous, uniform illumination suitable for the lighting requirements as specified for the test in 7.6.

- Apparatus for measuring algal cell density, preferably a particle counter, or a microscope and a counting chamber. Alternatively the algal densities may be determined by an indirect procedure using for instance a fluorimeter (e.g. in vitro fluorescence^[2] or DCMU⁵)-enhanced in vivo fluorescence^[3]), when sufficiently sensitive and if shown to be sufficiently well correlated with cell density. The apparatus used shall be capable of measuring cell densities as low as 10⁴ cells/ml and to distinguish between algal growth and disturbing effects, for example the presence of particulate matter and the colour of the sample. Spectrophotometers may be sufficiently sensitive to measure 10⁴ cells/ml providing a sufficient path length (up to 10 cm) can be used. However, this technique is particularly sensitive to interferences from suspended material and coloured substances at low cell densities.
- 6.3 **Culture flasks**, for example 250 ml conical flasks with air permeable stoppers.
- 6.4 Apparatus for membrane filtration, using filters of mean pore diameter 0,2 µm.
- 6.5 Autoclave.
- 6.6 pH meter.

Procedure 7

7.1 Preparation of growth medium

Prepare a growth medium by adding an appropriate volume of the nutrient stock solutions (5.3) to water.

Add to approximately 500 ml of water:

10 ml of stock solution 1 (5.3); (standards.iteh.ai)

- 1 ml of stock solution 2 (5.3); https://standards.itch.ai/catalog/standards/sist/e19e490f-c46f-493c-8c62-ISO 8692:2004
- 831e90a3963a/iso-8692-2004 1 ml of stock solution 3 (5.3);
- 1 ml of stock solution 4 (5.3).

Make up to 1 000 ml with water.

When autoclaving is necessary, stock solution 4 should be added afterwards.

Before use, equilibrate it by leaving overnight in contact with air, or by bubbling filtered air through it for 30 min. After equilibration, adjust the pH if necessary to 8.1 ± 0.2 , using either 1 mol/l hydrochloric acid or 1 mol/l sodium hydroxide solution.

This growth medium is buffered by bicarbonate and atmospheric CO₂. Different pH values may be obtained by modifying the concentration of HCO3 and/or the atmospheric CO2 concentration (requires closed vessels) as specified in ISO 14442. Should such modifications be required in order to perform a test at a different, specific pH value, these should be clearly motivated and reported.

7.2 Preparation of pre-culture and inoculum

A pre-culture shall be started two to four days before the beginning of the test. Growth medium (7.1) is inoculated at a sufficiently low cell density (e.g. 5×10^3 cells/ml to 10^4 cells/ml for three days pre-culturing) in order to maintain exponential growth until test start. The pre-culture shall be incubated under the same conditions as those in the test (7.6).

5 © ISO 2004 - All rights reserved

⁵⁾ DCMU = dichlorophenyldimethyl urea (CAS No. 330-54-1).

This exponentially growing pre-culture is used as an inoculum for the test. Measure the cell density in the pre-culture immediately before use in order to calculate the required inoculum volume.

7.3 Choice of test sample concentrations

Algae should be exposed to concentrations of the test sample in a geometric series with a ratio not exceeding 3,2 (e.g. 1,0 mg/l, 1,8 mg/l, 3,2 mg/l, 5,6 mg/l and 10 mg/l).

The concentrations should be chosen to obtain at least one inhibition below and one inhibition above the intended E_rC_x parameter. Additionally, at least two levels of inhibition between 10 % and 90 % should be included in order to provide data for regression analysis.

A limit test with only one concentration can be conducted to demonstrate absence of toxicity. The number of replicates for this one concentration should be six.

NOTE A suitable concentration range is best determined by carrying out a preliminary range-finding test covering several orders of magnitude of difference in test concentration. Replication of test concentrations is not a requirement in the preliminary test.

7.4 Preparation of test sample and stock solutions

In case the test sample is aqueous (e.g. wastewater), pre-treatment (e.g. filtration, neutralisation) should be considered, depending of the nature of the sample and the purpose of the test. Add nutrient stock solutions (5.3) as described in 7.1 to the sample.

For non-aqueous test samples, preparation of stock solutions is generally necessary. The method for preparation of the stock solutions should be carefully chosen, based on the properties of the sample. Stock solutions are normally prepared by dissolving the test sample in growth medium. Modifications are necessary when the test sample does not readily dissolve in the test medium as specified in ISO 14442 and ISO 5667-16.

ISO 8692:2004

Normally, the test shall be carried out without adjustment of the pH of the medium after addition of the test sample. However, some substances may exert a toxic effect due-to extreme acidity or alkalinity. In order to determine the toxicity of a sample independent of pH, adjust the pH of the aqueous sample or stock solution (before the dilution in series) to that of the culture medium using either 1 mol/l hydrochloric acid or 1 mol/l sodium hydroxide solution (see ISO 5667-16).

7.5 Preparation of test and control batches

Prepare the test and control batches by mixing the appropriate volumes of test sample or test sample stock solutions growth medium and inoculum (7.2) in the test vessels. The total volume, concentrations of added growth medium nutrients and cell density shall be the same in all vessels.

The initial cell density shall be sufficiently low to allow exponential growth in the control culture throughout the test duration without a pH drift of more than 1,5 pH units (see Clause 8). Therefore the initial cell densities shall not exceed 10⁴ cells/ml.

Prepare at least three replicates for each test sample concentration. To six further vessels, add only culture medium and inoculum with no test sample. These vessels serve as controls. If appropriate, prepare a single concentration series of the test sample without algae to serve as background for the cell density determinations.

The number of replicates per concentration might be reduced based on statistical considerations (see ISO/TS 20281), if increasing the number of concentrations and reducing the concentration spacing.

Measure the pH of a sample of each test batch and of the controls.

7.6 Incubation

The test vessels shall be sufficiently covered to avoid airborne contamination and to reduce water evaporation, but they shall not be airtight in order to allow CO_2 to enter the vessels (a small hole is sufficient). Incubate the test vessels at 23 °C \pm 2 °C, under continuous, white light. The light intensity at the average level of the test media shall be homogenous within \pm 10 % and in the range 60 μ mol/(m²·s) to 120 μ mol/(m²·s) when measured in the photosynthetically effective wavelength range of 400 nm to 700 nm, using an appropriate receptor.

It is important to note that the method of measurement, in particular the type of receptor (collector), affects the measured value. Spherical receptors (which respond to light from all angles above and below the plane of measurement) and "cosine" receptors (which respond to light from all angles above the measurement plane) are preferred to unidirectional receptors. They give higher readings for a multi-point light source of the type described in the Note.

NOTE The light intensity specified above can be obtained using four to six fluorescent lamps of the universal white (natural) type {i.e. a rated colour of standard colour 2 (a colour temperature of 4 300 K) according to [4]}. The optimum distance of the lamps is approximately 0,35 m from the algal culture medium.

For light-measuring instruments calibrated in lux, an equivalent range of 6 000 lx to 10 000 lx is acceptable for the test.

Testing of coloured test solutions requires specific modifications as described in ISO 14442.

Continuously shake, stir or aerate the cultures in order to keep the cells in free suspension and to facilitate CO_2 mass transfer from air to water, and in turn reduce pH drift.

iTeh STANDARD PREVIEW

7.7 Measurements

(standards.iteh.ai)

Measure the cell density in each test vessel (including the controls) at least every 24 h. Aliquots removed from the test batches for measurements should preferably not be replaced.

The nominal cell density can be used as the initial cell density and no initial cell density measurement is then required.

The test shall last for 72 h \pm 2 h.

At the end of the test, measure the pH of samples of each test batch (7.5) and of the controls (7.5). The appearance of the cells and the identity of the test organism should be confirmed by microscopy.

8 Validity criteria

Consider the test invalid if the following conditions are not met.

- a) The average control growth rate shall be at least $1,4 \, d^{-1}$. This growth rate corresponds to an increase in cell density by a factor 67 in 72 h.
- b) The variation coefficient of the control growth rates shall not exceed 5 %.
- c) The control pH shall not have increased during the test by more than 1,5 relative to the pH of the growth medium.

An increase in pH during the test can have significant influence on the results and therefore a limit of 1,5 units is set. These variations, however, should always be kept as low as achievable, e.g. by performing continuous shaking during the test.

If these criteria are not met, examine experimental techniques and use inocula from other sources, if necessary.

© ISO 2004 – All rights reserved