INTERNATIONAL ISO/IEC
STANDARD 1539-3

First edition
1999-02-01

Corrected and reprinted
2000-12-15

Information technology — Programming
languages — Fortran —

Part 3:
Conditional compilation

Technologies deFinformation —-Langages de programmation — Fortran —

Partie 3: Compilation conditionnelle

AZER Reference number
ISO I EC ISO/IEC 1539-3:1999(E)
° © ISO/IEC 1999

ISO/IEC 1539-3:1999(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading

this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in
this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the
unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

© ISO/IEC ISO/IEC 1539-3:1999(E)

Contents
IoGeNEral. ..o 1
1.1 S0P e 1
1.2 NOmMAtive REFErENCES ciueiiii i e e e 1
2 OVEIVIBW ..iniitiinii ittt e 2
2.1 Conditional COMPIIAtIONeiuuitiitii e 2
22 Clause numbers and syntax ruleso.oiiiiiiiiiiiii i 2
2.3 Coco program CONfOIMANCE ouiininieitiii e e 2
24 High 1eVel SYNTAX ..ooonitit i e, 3
3 Constants, source form and text inCIUSIONc.oiiiiiiiiiii e, 3
3.1 COCO COMSLANLS ...\ttt ittt e e e e ettt e e 3
32 CoCO SOUICE FOITN eeieit it 4
3.2.1 COCO COMIMENIATY ...euenitiniiit ettt et et 5
3.2.2 Coco directive CONtINUALION uuinininitieii ittt et e e e 5
3.2.3 C0CO QITECLIVES ...eeinieineetet et ettt ettt et e e e e et e e e e e ens 6
33 Source text inclasioft [0y Lo N L L L L 7
4 Coco type declaration dir€CtIVES ..c.. . ieuss Fenssnm s Tone edabesa Tor eems St eeseeaeenee e eneeeeee e e eee e e enens 8
5 Coco variables, expressions and assignment direCtive 0 . 4 . i, 9
51 Coco variables ... e 9
52 COCO EXPIESSIONS | .. .o.eiorieninsrir e oeen s ensnrses B n e frdr wbann s o R@)s e v e ee e renen e e eaeeeeiaas 9
52,1 COCO PIIMATY ...yl 40365 6o b 5l i ks 5360 e BEh 4 e n et eteee e e e e ne e en e eaeeeeananeenens 9
5.2.2 Level-1 @XPIESSIONS einitiiii ettt et et e 9
5.2.3 LevVel-2 @XPIeSSIONS ...cuuitniiit ettt et 9
5.2.4 Level-3 eXPIeSSIONS ccitiuiiiiiiiet ittt e 10
5.2.5 General form of @ COCO @XPIESSION. ... ouviuitii e 10
53 Data type and value of @ COCO €XPIESSIONvviriiniiniririe e 10
54 Coco initialization eXPresSiON o.iiiiiiinieiet it 12
55 Coco assigNMeNnt dITECHIVEo.iuiiiieit i 13
6 Coco execution control and conditional compilationcccovvuviiieiiineiies e, 13
6.1 C0CO BIOCKS. ... 13
6.2 COCO TF CONSIITCE ..ovtetit i e e e e e 13
6.2.1 Form of the coco IF CONStIUCt oouuiviiiniii e 13
6.2.2 Execution of an IF CONStIUCtcoooiviiiiiiiii e 14

ISO/IEC 1539-3:1999(E)

7 Coco message and StOP dITECHIVES o.euiniirii ettt et e e 15

8 Scope and definition of coco variables ... 16
8.1 Scope of coco variables ... 16
8.2 Events that cause coco variables to become definedc.co 16

O The coCO SET fIle ouuiuiiiiiii e 17

ANNEX A EXAMPIES ..ot 20

© ISO/IEC

© ISO/IEC ISO/IEC 1539-3:1999(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national
bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

International Standard ISO/IEC 1539-3 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming languages, their environments and system
software interfaces.

ISO/IEC 1539 consists of" the- 'following" parts, - under “the ‘general 'title ' Information technology —
Programming languages — Fortran:

— Part 1: Base language
— Part 2: Varying length character strings

— Part 3: Conditional compilation

Annex A of this part of ISO/IEC 1539 is for information only.

ISO/IEC 1539-3:1999(E) © ISO/IEC

Introduction

Programmers often need to maintain several versions of code to allow for different systems and different
applications. Keeping several copies of the source code is error prone. It is far better to maintain a master code
from which any of the versions may be selected.

This conditional compilation facility has deliberately been kept very simple. The additional lines inserted to
control the process and all the lines that are not selected are omitted from the output or are converted to
comments. Those that are selected are copied to the output completely unchanged. Which version is selected is
controlled by directives in a file known as the SET file.

Examples of the need for such a facility are:

(1) Parameterized types do not solve all the problems associated with different precisions. Parameterized
derived types are not part of Fortran 95.

(2) A version of a code for complex arithmetic may differ little from the version for real arithmetic.
(3) The relative efficiency of different algorithms or constructions may vary from processor to processor.
(4) Versions may be required fordifferent message-passing libraries.

(5) Additional print statements may be/inserted intoa program Whenunder development. It may be very
helpful to have these readily available in case some unexpected results are found in production use.

(6) Versions may be required with character constants in different languages (internationalization).
(7) For OPEN statements, the file naming convention varies between systems.

Some of these cases may be addressed within the Fortran code itself by run-time tests, but this will result in a
large object code and some run-time overhead. Without conditional compilation, however, most of them can
only be solved by maintaining separate versions of the code.

Vi

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 1539-3:1999(E)

Information technology — Programmmg languages —
Fortran —

Part 3: Conditional compilation

1 General

1.1 Scope

This part of ISO/IEC 1539 defines facilities for conditional compilation in Fortran. This part of ISO/IEC 1539
provides an auxiliary standard for the version'of the 'Fortran language specified by ISO/IEC 1539-1 and
informally known as Fortran 95.

1.2 Normative References

The following standard contains provisions which, through reference in this text, constitute provisions of this
part of ISO/IEC 1539. At the time of publication, the edition indicated was valid. All standards are subject to
revision, and parties to agreements based on this part of ISO/IEC 1539 are encouraged to investigate the
possibility of applying the most recent editions of the standard indicated below. Members of IEC and ISO
maintain registers of currently valid International Standards.

ISO/IEC 1539-1 : 1997, Information technology — Programming languages — Fortran — Part 1: Base
language.

ISO/IEC 1539-3:1999(E) © ISO/IEC

2 Overview

2.1 Conditional compilation

Conditional compilation (coco) is described in this document as an independent process that yields a source
program for a Fortran processor. It is expected that implementations will usually integrate the two processes.

The coco process is controlled by directives that are either omitted from the coco output or are converted to
Fortran comments. Coco comments may be introduced to explain the actions and these, too, are either omitted
from the coco output or are converted to Fortran comments. Other lines (noncoco lines) are either copied
unchanged to the output, omitted, or converted to Fortran comments. There is no requirement that the coco
output is a valid Fortran program. The lines of the coco output are in the same order as the corresponding lines
of the coco program.

Coco execution is a sequence of actions specified by the coco directives and performed in the order that they
appear. The combination of a computing system and the mechanism by which these actions are performed is
called a coco processor in this part of this standard.

2.2 Clause numbers and syntax rules

The notation used in this part of ISO/IEC 1539 is'described in ISOAEC 153941, 1.6. However, item (4) in
ISO/IEC 1539-1, 1.6.2 is replaced with:

(4) Each syntax rule is given a unique identifying number of the form CCRsnn, where s is a one or two-digit
clause number and nn is a two-digit sequence number within that clause. The syntax rules are distributed
as appropriate throughout the text, and are referenced by number as needed.

2.3 Coco program conformance

A coco program is a standard-conforming coco program if it uses only those forms and relationships herein
and if the program has an interpretation according to this part of this standard.

A coco processor conforms to this part of this standard if:

(1) It executes any standard-conforming coco program and its SET file in a manner that fulfills the
interpretations herein, subject to any limits that the processor may impose on the size and complexity of
the coco program and its SET file.

(2) It contains the capability to detect and report the use within the executed part of a coco program and its
SET file of an additional form or relationship that is not permitted by the numbered syntax rules or their
associated constraints.

(3) It contains the capability to detect and report the use within the executed part of a coco program and its
SET file of source form not permitted by clause 3.

(4) It contains the capability to detect and report the reason for rejecting a submitted coco program and its
SET file.

If a coco program contains a STOP directive that is executed, there is no requirement for the processor to
report on any directives that follow the STOP directive.

© ISO/IEC

2.4 High level syntax

ISO/IEC 1539-3:1999(E)

This subclause introduces the terms associated with the conditional compilation program.

CCR201 coco-program

CCR202 pp-input-item is
or

is pp-input-item [pp-input-item] ...

coco-construct
noncoco-line

The term noncoco-line refers to any line without the characters “??” in character positions 1 and 2.

CCR203 coco-construct is
or
CCR204 coco-action-construct is
or
CCR205 coco-action-directive is
or
or
Note 2.1

coco-type-declaration-directive
coco-action-construct

coco-action-directive
coco-if-construct

coco-assignment-directive
coco-message-directive
coco-stop-directive

A coco program is not requiredto contain any coco directives.

3 Constants, source form-and:text inclusion

3.1 Coco constants

CCR301 coco-constant is
or
CCR302 coco-literal-constant is
or
CCR303 coco-int-literal-constant is

CCR304 coco-logical-literal-constant is
or

CCR305 coco-char-literal is
or

CCR306 coco-named-constant is

coco-literal-constant
coco-named-constant

coco-int-literal-constant
coco-logical-literal-constant

digit [digit] ...

.TRUE.
.FALSE.

"[rep-char] ...’
”[rep-char] ...”

name

Constraint: coco-named-constant shall have the PARAMETER attribute.

CCR307 name is

letter | alphanumeric-character] ...

Constraint: The maximum length of a name is 31 characters.

ISO/IEC 1539-3:1999(E) © ISO/IEC

CCR308 alphanumeric-character is letter

or digit

or underscore
CCR309 underscore is

Each digit is one of the digits
0123456789
and each coco-int-literal-constant is interpreted as a decimal value.
Each letter is one of the upper-case letters
ABCDEFGHIJKLMNOPQRSTUVWXYZ
or one of the lower-case letters
abcdefghijklmnopqrstuvwxyz

Each rep-char is a character in the processor-dependent character set, which includes the letters, the digits, the
underscore, the blank, the currency symbol, and the characters

=+-*/(),. V% & ;<>?

In a coco directive, a lower-case letter is equivalent to the corresponding upper-case letter except in a coco
character literal.

The delimiting apostrophes or quotation marks are not part of the value of a coco character literal.

An apostrophe character within a coco character literal delimited by apostrophes is represented by two
consecutive apostrophes (without intervening blanks); in-this case, the two apostrophes are counted as one
character. Similarly, a quotation mark character:within a charactériliteral /delimited by quotation marks is
represented by two consecutive quotation marks (without intervening blanks) and the two quotation marks are
counted as one character.

3.2 Coco source form

A coco program is a sequence of one or more lines, organized as coco directives, coco comment lines (3.2.1)
and noncoco lines. A coco directive is a sequence of one or more coco lines. A coco line is a line with the
characters ”??” in character positions 1 and 2. These characters are not part of the coco directive. A noncoco
line is a line that does not begin in this way.

A keyword is a word that is part of the syntax of a coco directive. Examples of keywords are IF, INTEGER,
LOGICAL, and MESSAGE.

A coco comment may contain any character that may occur in a coco character literal. Outside commentary, a
coco directive consists of a sequence of coco lexical tokens. Each token is a keyword, a name, a literal
constant, an operator (see Table 2), a comma, a parenthesis, an equals sign, or the separator :: .

In coco source, each source line may contain from zero to 132 characters.

In coco source, blank characters shall not appear within coco lexical tokens other than in a coco character
literal. Blanks may be inserted freely between tokens to improve readability. A sequence of blank characters
outside of a coco character literal is equivalent to a single blank character.

A blank shall be used to separate names, constants, or coco-char-literals from adjacent keywords, names,
constants, or coco-char-literals.

© ISO/IEC ISO/IEC 1539-3:1999(E)

Blanks are optional between the following pairs of adjacent coco keywords:

ELSE IF
END IF

3.2.1 Coco commentary

” 'II

Within a coco directive, the character ”!” in any character position initiates a coco comment except when it
appears within a coco character literal. The coco comment extends to the end of the source line. If the first
nonblank character on a coco line after character positions 1 and 2 is an ”!”, the line is a coco comment line.
Coco lines containing only blanks after character positions 1 and 2 or containing no characters after character
positions 1 and 2 are also coco comment lines.

Note 3.1
An example of the use of a coco comment in a coco IF construct (6.2) is:

?? IF (DEVELOPING) THEN
?? ! The following output statement was used when
?? ! developing the code

WRITE(UNIT=*,FMT=*) 'The value of A is', A
?? END IF

3.2.2 Coco directive continuation

The character “&” is used to indicate that the current coco, directive is continued on the next line that is not a
coco comment line. This line shall be a coco line. Coco.comment lines shallnot be continued; an “&” in a coco
comment has no effect during coco execution: Comments may occur'within a continued coco directive. When
used for continuation, the “&” is not part of the coco directive. After character positions 1 and 2, no coco line
shall contain a single “&” as the only nonblank character or as the only nonblank character before an ”!” that
initiates a coco comment.

3.2.2.1 Continuation other than of a coco character literal

In a coco directive, if an “&” not in a coco comment is the last nonblank character on a line or the last
nonblank character before an ”!” that initiates a coco comment, the coco directive is continued on the next line
that is not a coco comment line. If the first nonblank character after character positions 1 and 2 on the next
coco-noncomment line is an “&”, the coco directive continues at the next character following the “&”;
otherwise, it continues with character position 3 of the next coco-noncomment line.

If a coco lexical token is split across the end of a line, the first nonblank character after character positions 1
and 2 on the first following coco-noncomment line shall be an “&” immediately followed by the successive
characters of the split token.

	¯£:ŒV·Œ�;mr[iªS˜“ˇ�ØcäõŁY–)K„öÓ^F6Pï³ØrÙÔÛÞp�Fúﬁ¸+´‡*¬ÚŸÇ“ºNW¯��
X
L;�°�Ô���‰#aJˇ�⁄†

