

Designation: F 467M - 03a

Standard Specification for Nonferrous Nuts for General Use [Metric]¹

This standard is issued under the fixed designation F 467M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification covers the requirements for commercial wrought nonferrous nuts in nominal thread diameters M6 to M36 inclusive in a number of alloys in common use and intended for general service applications.

1.2 Applicable bolts, cap screws, and studs for use with nuts covered by this specification are covered by Specification F 468M.

NOTE 1—This specification is the metric companion of Specification F 467.

2. Referenced Documents

- 2.1 ASTM Standards:
- B 154 Test Method for Mercurous Nitrate Test for Copper and Copper Alloys²

B 446 Specification for Nickel-Chromium-Molybdenum-Columbium-Alloy (UNS N06625), Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219), and Nickel-Chromium-Molybdenum-Tungsten Alloy (UNS N06650) Rod and Bar³

- D 3951 Practice for Commercial Packaging⁴
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials⁵
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications⁶
- E 34 Test Methods for Chemical Analysis of Aluminum and Aluminum Base Alloys⁷

- ⁵ Annual Book of ASTM Standards, Vol 03.01.
- ⁶ Annual Book of ASTM Standards, Vol 14.02.
 ⁷ Annual Book of ASTM Standards, Vol 03.05.

- E 38 Methods for Chemical Analysis of Nickel-Chromium and Nickel-Chromium-Iron Alloys⁸
- E 53 Test Methods for Determination of Copper in Unalloyed Copper by Gravimetry⁷
- E 54 Test Methods for Chemical Analysis of Special Brasses and Bronzes⁹
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition⁷
- E 62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods)⁷
- E 75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys⁷
- E 76 Test Methods for Chemical Analysis of Nickel–Copper Alloys⁷
- E 92 Test Method for Vickers Hardness of Metallic Materials⁵
- E 101 Test Method for Spectrographic Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Tech-Mnique¹⁰
- E 120 Test Methods for Chemical Analysis of Titanium and Titanium Alloys⁷
- E 165 Practice for Liquid Penetrant Examination¹¹
- E 227 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique⁹
- E 354 Test Methods for Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys⁷
- $E\,478$ Test Methods for Chemical Analysis of Copper Alloys 7

⁹ Discontinued; see 2001 Annual Book of ASTM Standards, Vol 03.05. ¹⁰ Discontinued; see 1995 Annual Book of ASTM Standards, Vol 03.05.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This specification is under the jurisdiction of ASTM Committee F16 on Fasteners and is the direct responsibility of Subcommittee F16.04 on Nonferrous Fasteners.

Current edition approved Oct. 1, 2003. Published October 2003. Originally approved in 1979. Last previous edition approved in 2003 as F 467M - 03.

² Annual Book of ASTM Standards, Vol 02.01.

³ Annual Book of ASTM Standards, Vol 02.04.

⁴ Annual Book of ASTM Standards, Vol 15.09.

⁸ Discontinued; see *1988 Annual Book of ASTM Standards*, Vol 03.05. Replaced by E 350.

¹¹ Annual Book of ASTM Standards, Vol 03.03.

- E 1409 Test Method for Determination of Oxygen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique³
- F 468M Specification for Nonferrous Bolts, Hex Cap Screws, and Studs for General Use [Metric]¹²
- F 606M Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, and Rivets [Metric]¹²
- F 1470 Guide for Fastener Sampling for Specified Mechanical Properties and Performance Inspection¹²

2.2 ASME Standards:

B 1.13M Metric Screw Threads¹³

B 18.2.4.1MMetric Hex Nuts, Style 1¹³

3. Ordering Information

3.1 Orders for nuts under this specification shall include the following information:

3.1.1 Quantity (numbers of pieces of each item and size); 3.1.2 Name of item;

3.1.3 Nominal thread diameter and thread pitch;

3.1.4 Alloy number (Table 1);

3.1.5 Stress relieving, if required (4.2.3);

3.1.6 "Shipment lot" testing, as required (Section 9);

3.1.7 Source inspection, if required (Section 14);

3.1.8 Certificate of compliance or test report, if required (Section 16);

3.1.9 Additional requirements, if any, to be specified on the purchase order (4.2.1, 7.2, 8.2, 11.1, and 12.1),

3.1.10 Supplementary requirements, if any; and

3.1.11 ASTM specification and year of issue.

NOTE 2—A typical ordering description is as follows: 10 000 pieces, Hex Nut, M8 \times 1.25 Alloy 270, Furnish Certificate of Compliance, Supplementary Requirement S1, ASTM Specification F 467M – XX.

4. Materials and Manufacture

4.1 Materials:

4.1.1 The nuts shall be manufactured from material having a chemical composition conforming to the requirements in Table 1 and capable of developing the required mechanical properties for the specified alloy in the nut. 4.1.2 The starting condition of the raw material shall be at the discretion of the fastener manufacturer but shall be such that the nuts conform to all the specified requirements.

4.2 Manufacture:

4.2.1 *Forming*—Unless otherwise specified, the nuts shall be hot pressed, cold formed, or machined from suitable material at the option of the manufacturer.

4.2.2 *Condition*—Except as provided in 4.2.3, the nuts shall be furnished in the condition specified below:

Alloy	Condition								
Copper (all alloys)	As formed or stress relieved at manufacturer's option								
Nickel alloys 400 and 405	As formed or stress relieved at manufacturer's option								
Nickel alloy 500	Solution annealed and aged								
Aluminum alloys:									
2024-T4	Solution treated and naturally aged								
6061-T6	Solution treated and artificially aged								
6262-T9	Solution treated, artificially aged, and cold worked								
Titanium	As formed								

4.2.3 *Stress Relieving*—When required, stress relieving shall be specified by the purchaser for all copper alloys and nickel alloys 400 and 405.

5. Chemical Composition

5.1 *Chemical Composition*—The nuts shall conform to the chemical composition specified in Table 1 for the specified alloy.

5.2 Manufacturer's Analysis:

5.2.1 Except as provided in 5.2.2, when test reports are required on the inquiry or purchase order (3.1.8), the manufacturer shall make individual analyses of randomly selected nuts from the product to be shipped and report the results to the purchaser. Alternatively, if heat and lot identities have been maintained, the analysis of the raw material from which the nuts have been manufactured may be reported instead of product analysis.

5.2.2 For aluminum nuts, instead of 5.2.1, the manufacturer may furnish a certificate of conformance certifying compliance with the chemical composition specified in Table 1.

5.3 Product Analysis:

5.3.1 Product analyses may be made by the purchaser from nuts representing each lot. The chemical composition thus determined shall conform to the requirements in Table 1.

5.3.2 In the event of disagreement, a referee chemical analysis of samples from each lot shall be made in accordance with 11.1 and 12.1.

¹² Annual Book of ASTM Standards, Vol 01.08.

¹³ Available from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112.

			Arsenic, max	<u>به</u> ۲۰
			Tin	0.5-1.0 0.5-1.0 4.2-5.8 0.20 max 0.20 max 0.20 max
			Lead, max	0.10 0.20 0.20 0.05 0.05 0.05 0.05 0.05 0.0
			Zinc, max ^A	balance balance balance 0.50 1.5 1.5 1.5 1.5 1.5 1.00 1.00
irements		-Base Alloys	Silicon	0.25 max 1.5-2.2 ⁶ 0.8-2.0 2.8-3.5 2.8-3.5 2.8-3.5 ceed 0.30 %.
			Phos- phorus	0.03-0.35
			Nickel, max	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Chemical Requirements	Composition, %	Copper and Copper-Base Alloys	Man- ganese, max	1.0 1.5 0.10 0.7 1.5 1.5 1.00 1.00 1.00 med elements
ی Tagere 1 andards.iteh.ai/catal	Cor	Copp	Iron, max	0.10 0.10 0.10 0.10 0.10 0.10 0.30 0.30
andards.tteh.a/catal	sta	and	Copper, min	99.9 63.0-68.5 63.0-68.5 59.0-65.0 balance ^A 78.0 ^B 98.65 ^B 94.8 ^B 94.0 ^B 94.0 ^B 94.0 ^B 94.0 ^B 57.0-60.0 94.0 ^B 94.0 ^B 57.0-60.0 74.0 ^B 55.0 ^B 78.0 ^B 94.8 ^B 94.8 ^B 55.0 ^B 55
			Alumi- num	6.0-8.0 9.0-11.0 6.3-7.6 6.3-7.6 0.25 max 0.25 max 0.25 max
			General Name	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
			Alloy	110 270 270 462 510 614 6314 655 655 655 655 675 710 715 715 715 715 575 575 575 575 575 575
		NNS	Designa- tion Number	C11000 C27000 C26200 C46200 C51000 C61400 C61400 C61400 C61400 C61400 C61400 C65500 C65500 C65500 C71500 C66 C67 C71000 C66 C67 C71000 C66 C67 C77 C67 C7000 C66 C67 C7000 C66 C67 C7000 C66 C67 C7000 C66 C67 C7000 C67 C67 C7000 C67 C67 C7000 C67 C7000 C67 C7000 C67 C7000 C67 C7000 C67 C67 C7000 C67 C67 C67 C67 C67 C67 C67 C67 C67 C67

0e3eeaf44/astm-f467m-03a

€ F 467M – 03a

		יוושי	-	-													
		Tung- sten	3.0-4.5				3.2-4.2		3.0-4.4								
		Vana- dium	0.2-0.4 0.35 max														
		Sulfur, max	0.030	0.024	0.025-0.060	0.01	0.015		0.02 max								
		Molyb- denum	26.0–30.0 15.0–17.0				8.0-10.0		15.0-17.0								
		Co balt, max	2.50	В	В	В	1.00	тах									
		Tita- nium				0.35-0.85	0.40 max		0.02-0.25								
		Sili- con, max	1.00	0.5	0.5	0.5	0.50	max	0.08	max							
	/S	Phos- pho- rus, max	0.025	2	r	1	0.015	2	0.04	max	d	m 100.	(VAR)				
TABLE 1 Continued	Nickel and Nickel-Base Alloys	Nickel ^A	balance	63.0-70.0	63.0-70.0	63.0-70.0	58.0 min	d	balance	5.	11	elements fro	melting proce				
ABLE 1	and Nic	Man- ga- nese, max	1.00	2.0	2.0	1.5	0.50	r	0.75	max	1	er named	um arc re				
stai	Nicke	n ax max 18/sist/18	4.0-6.0 4.0-7.0	2.5	2.5	2.0	5.0	max	5.0	max	4-1	m of the oth	or the vacu				
		Copper ⁴		balance	balance	balance						cting the sur	cess (ESR).				
		Chro- mium	1.0 max 14.5–16.5				20.0-23.0		19.0–23.0			uted by dedu	emeltina proc				
		Car- bon, max	0.05	0.3	0.3	0.25	0.010		0.010	max		ally comp	ctroslag r	0			
		Alumi- num				2.30–3.15	0.40	max				be arithmetica	usina the ele	þ			
		General Name	Ni-Mo Ni-Mo-Cr	Ni-Cu Class A	Ni-Cu Class B	Ni-Cu-Al	Ni-Cr-Mo-Cb		Ni-Cr-Mo-W			^A Elements shown as balance shall be arithmetically computed by deducting the sum of the other named elements from 100.	^e Cobatit is to be counted as nickel. ^c Allov 625 material shall be refined using the electrosiag remelting process (ESR). Or the vacuum arc remelting process (VAB).				
		Al- loy	335 276	400	405	500	625 ^C		686			its shown	is to be c 25 materi				
		UNS Designa- tion Num- ber	N10001 N10276	N04400	N04405	N05500	N06625		N06686)		^A Elemen	^e Cobalt ^c Allov 62				

https://standards.iteh.ai/catalog/standards/sist/f8/

€ F 467M – 03a