INTERNATIONAL STANDARD

16824

First edition 1999-05-15

Information technology — 120 mm DVD rewritable disk (DVD-RAM)

Technologies de l'information — Disque à réécriture DVD de diamètre 120 mm (DVD-RAM)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 16824:1999 https://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-7a8dd42fc212/iso-iec-16824-1999

Contents		Page
Section 1 - General		1
1 Scope		1
2 Conformance		1
2.1 Optical Disk		1
2.2 Generating system		1
2.3 Receiving system		1
3 Normative references		1
4 Definitions		1
4.1 Case		1
4.2 Channel bit		2
4.3 Digital Sum Value (DSV		2
4.4 Disk Reference Plane		2
4.5 Dummy substrate 4.6 Embossed mark	iTeh STANDARD PREVIEW	2 2
4.7 Entrance surface		2
4.8 Land and Groove	(standards.iteh.ai)	2
4.9 Mark		2
4.10 Phase change	<u>ISO/IEC 16824:1999</u>	2
4.11 Polarization	https://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-	2
4.12 Recording layer	7a8dd42fc212/iso-iec-16824-1999	2
4.13 Sector		2
4.14 Space		2
4.15 Substrate4.16 Track		2 2
4.17 Track pitch		2
4.18 ZCLV		2
4.19 Zone		2
5 Conventions and notation	as	2
5.1 Representation of numbe	rs	2
5.2 Names		3
6 List of acronyms		3
7 General description of the	e optical disk	3
8 General requirements		4
8.1 Environments		4
8.1.1 Test environment		4

© ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

© ISO/IEC 16824:1999 (E)

8.1.2 Operating environment		4
8.1.3 Storage environment		5
8.1.4 Transportation		5
8.2 Safety requirement		5
8.3 Flammability		5
9 Reference Drive		5
9.1 Optical Head		5
9.2 Read channels		6
9.3 Rotation speed		6
9.4 Disk clamping		7
9.5 Normalized servo transfer fu	nction	7
9.6 Reference Servo for axial tra	cking	7
9.7 Reference Servo for radial tr	acking	8
Section 2 - Dimensional, mecha	anical and physical characteristics of the disk	9
10 Dimensional characteristics		9
10.1 Overall dimensions		10
10.2 First transition area		11
10.3 Second transition area		11
10.4 Clamping Zone		11
10.5 Third transition area		11
10.6 Rim area	Teh STANDARD PREVIEW	12
10.7 Remark on tolerances	TELL STAINDARD TREVIEW	12
10.8 Label	(standards.iteh.ai)	12
11 Mechanical characteristics	ISO/IEC 1/224/1000	12
11.1 Mass	ISO/IEC 16824:1999	12
11.2 Moment of inertia	s://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7- 7a8dd42fc212/iso-iec-16824-1999	12
11.3 Dynamic imbalance	/aodu421c212/180-1cc-10024-1999	12
11.4 Sense of rotation		12
11.5 Runout		12
11.5.1 Axial runout		12
11.5.2 Radial runout		12
12 Optical characteristics		13
12.1 Index of refraction		13
12.2 Thickness of the transparen	at substrate	13
12.3 Angular deviation		13
12.4 Birefringence of the transpa	arent substrate	13
12.5 Reflectivity		13
Section 3 - Format of informat	ion	14
13 Data format		14
13.1 Data Frames		14
13.1.1 Data ID		15
13.1.2 Data ID Error Detection of	code (IED)	16
13.1.3 Reserved bytes		16
13.1.4 Error Detection Code (EI	DC)	16
13.2 Scrambled Frames		17
13.3 ECC Blocks		17
13.4 Recording Frames		19
13.5 Recording code and NRZI	conversion	20

13.6 Recorded Data Field	21
13.7 DC component suppress Control (DCC)	22
13.7.1 DCC for the data in the Rewritable Area	22
13.7.2 DCC for the data in the Embossed Area	22
13.7.3 PID and PED recording	23
14 Track format	23
14.1 Track shape	23
14.2 Track path	24
14.3 Track pitch	24
14.4 Track layout	24
14.5 Rotation speed	24
14.6 Radial alignment	25
14.7 Sector number	25
15 Sector format	26
15.1 Sector layout	26
15.1.1 Sector layout in the Rewritable Area	26
15.1.2 Sector layout in the Embossed Area	26
15.2 VFO fields	27
15.3 Address Mark (AM)	28
15.4 Physical ID (PID) fields	28
15 5 DID Error Datastian godo (DED) fields	29
15.6 Postamble 1 and Postamble 2 (PA 1, PA 2) fields 15.7 Mirror field 15.7 Mirror field	29
15.7 Mirror field ITEN STANDARD PREVIEW	31
15.8 Gap field 15.9 Guard 1 field (standards.iteh.ai)	31
15.9 Guard 1 field (Standards.iten.ar)	31
15.10 Pre-Synchronous code (PS) field	31
15.11 Data field <u>ISO/IEC 16824:1999</u>	31
15.12 Postamble 3 (PA 3) field https://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-	31
15.13 Guard 2 field 7a8dd42fc212/iso-iec-16824-1999	31
15.14 Recording polarity randomization	31
15.15 Buffer field	32
16 Format of the Information Zone	32
16.1 Division of the Information Zone	32
16.2 Lead-in Zone	34
16.2.1 Structure of Lead-in Zone	34
16.2.2 Initial Zone	34
16.2.3 Reference Code Zone	34
16.2.4 Buffer Zone 1	34
16.2.5 Buffer Zone 2	35
16.2.6 Control Data Zone	35
16.2.7 Connection Zone 16.2.8 Guard Track Zones 1 and 2	39 40
16.2.9 Disk Test Zone	40
16.2.10 Drive Test Zone	40
16.2.11 Reserved Zone	40
16.2.12 DMA 1 and DMA 2	40
16.3 Data Zone	41
16.3.1 Structure of Data Zone and of the Defect Management Areas (DMAs)	41
16.3.2 Guard Track Zones	41
16.3.3 Partitioning	41
16.4 Lead-out Zone	43
16.4.1 Structure of Lead-out Zone	43
16.4.2 DMA 3 and DMA 4	43
16.4.3 Reserved Zone	43

16.4.4 Guard Track Zone 1	43
16.4.5 Drive Test Zone	43
16.4.6 Disk Test Zone	43
16.4.7 Guard Track Zone 2	43
17 Defect management	43
17.1 Defect Management Areas (DMAs)	43
17.2 Disk Definition Structure (DDS)	44
17.3 Spare sectors	46
17.4 Slipping Algorithm	47
17.5 Linear Replacement Algorithm	47
17.6 Primary Defect List (PDL)	48
17.7 Secondary Defect List (SDL)	50
17.8 Formatting of the disk	51
17.8.1 Full and Partial Certification	52
17.8.2 Initialization	52
17.8.3 Re-initialization	52
17.8.4 Data field number resulting from Initialization and Re-initialization	53
17.10 Produces advers	54 54
17.10 Read procedure 17.10.1 Blank ECC block	54 54
17.10.1 Blank ECC block 17.10.2 Read procedure	54 54
17.10.2 Read procedure	34
Section 4 - Characteristics of embossed information iTeh STANDARD PREVIEW	55
19 Mothed of testing	55
(Standards, iten, ai)	
18.1 Environment	55 55
18.2 Reference Drive 18.2.1 Optios and machanics ISO/IEC 16824:1999	55 55
16.2.1 Optics and mechanics https://standarda.itah.ai/astala.a/standarda/sixt/af7daf94.670a.4a1b.80a7	55 55
18.2.2 Read power	55 55
18.2.4 Tracking channel	55 55
18.2.5 Tracking	55 55
18.3 Definition of signals	55
Total Definition of signals	55
19 Signals from lands and grooves	60
19.1 Push-pull signal	60
19.2 Divided push-pull signal	60
19.3 On-track signal	61
19.4 Phase depth	61
19.5 Wobble signal	61
20 Signals from Header fields	62
20.1 VFO 1 and VFO 2	62
20.2 Address Mark, PID, PED and Postamble	62
20.3 Signals from Header 1, Header 2, Header 3 and Header 4	63
20.4 Phase depth	63
21 Signals from Embossed Area	63
21.1 High Frequency (HF) signal	63
21.1.1 Modulated amplitude	63
21.1.2 Signal asymmetry	64
21.1.3 Cross-track signal	64
21.2 Jitter	64

21.3 Servo signal	64
21.3.1 Differential phase tracking error signal	64
21.3.2 Tangential push-pull signal	64
Section 5 - Characteristics of the recording layer	65
22 Method of testing	65
22.1 Environment	65
22.2 Reference Drive	65
22.2.1 Optics and mechanics 22.2.2 Read power	66 66
22.2.3 Read channel	66
22.2.4 Tracking	66
22.3 Write conditions	66
22.3.1 Write pulse	66
22.3.2 Write power	66
22.4 Definition of signals	66
23 Write characteristics	67
23.1 Modulated amplitude and Signal asymmetry	67
23.2 Jitter	67
Section 6 - Characteristics of user data	67
iTeh STANDARD PREVIEW	0,
24 Method of testing	67
(standards.iteh.ai)	
Annexes	
<u>ISO/IEC 16824:1999</u>	
A - Measurement of the angular deviation citeh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-7a8dd42fc212/iso-iec-16824-1999	68
B - Measurement of birefringence	70
C - Measurement of the differential phase tracking error	72
D - Reflectivity calibration and measuring method	76
E - Tapered cone for disk clamping	78
F - Measuring conditions for the operation signals	79
G - 8-to-16 Recording code with RLL (2,10) requirements	81
H - Definition of the write pulse	91
J - Guideline for randomization of the Gap length, the Guard 1 length and the recording polarity	93
K - Transportation	94
L - Guideline for sector replacement	95

© ISO/IEC ISO/IEC 16824:1999 (E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

This International Standard was prepared by JISC (as Standard JIS X 6243-1998) with document support and contribution from ECMA and was adopted, under a special "fast-track procedure", by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, in parallel with its approval by national bodies of ISO and IEC.

Annexes A to H form a normative part of this International Standard. Annexes J to L are for information only.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 16824:1999 https://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-7a8dd42fc212/iso-iec-16824-1999

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 16824:1999 https://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-7a8dd42fc212/iso-iec-16824-1999

Information technology — 120 mm DVD rewritable disk (DVD-RAM)

Section 1 - General

1 Scope

This International Standard specifies the mechanical, physical and optical characteristics of a 120 mm optical disk to enable interchange of such disks. It specifies the quality of the recorded signals, the format of the data and the recording method, thereby allowing for information interchange by means of such disks. The data can be written, read and overwritten many times using the phase change method. This disk is identified as DVD-RAM.

This International Standard specifies

- two related but different Types of this disk (see clause 7),
- the conditions for conformance,
- the environments in which the disk is to be tested, operated and stored,
- the mechanical, physical and dimensional characteristics of the disk, so as to provide mechanical interchange between data processing systems,
- the format of the information on the disk, including the physical disposition of the tracks and sectors, the error correcting codes and the coding method,
- the characteristics of the signals recorded on the disk, thus enabling data processing systems to read the data from the disk.

This International Standard provides for the interchange of disks between optical disk drives. Together with a standard for volume and file structure, it provides for full data interchange between data processing systems. The optical disks specified by this International Standard may be enclosed in cases according to ISO/IEC 16825 as specified therein.

<u>ISO/IEC 16824:1999</u>

2 Conformance

https://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-

7a8dd42fc212/iso-iec-16824-1999

2.1 Optical Disk

A claim of conformance with this International Standard shall specify the Type implemented. An optical disk shall be in conformance with this International Standard if it meets all mandatory requirements specified for this Type.

2.2 Generating system

A generating system shall be in conformance with this International Standard if the optical disk it generates is in accordance with 2.1.

2.3 Receiving system

A receiving system shall be in conformance with this International Standard if it is able to handle both Types of optical disk according to 2.1.

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 950:1991, Safety of information technology equipment.

ISO/IEC 16825:1999, Information technology — Case for 120 mm DVD-RAM disks.

4 Definitions

For the purposes of this International Standard, the following definitions apply.

4.1 Case: The housing for an optical disk, that protects the disk and facilitates disk interchange.

ISO/IEC 16824:1999 (E) © ISO/IEC

4.2 Channel bit: The elements by which the binary values ZERO and ONE are represented by marks and pits on the disk.

- **4.3 Digital Sum Value (DSV):** The arithmetic sum obtained from a bit stream by allocating the decimal value 1 to Channel bits set to ONE and the decimal value -1 to Channel bits set to ZERO.
- **4.4 Disk Reference Plane:** A plane defined by the perfectly flat annular surface of an ideal spindle onto which the clamping area of the disk is clamped, and which is normal to the axis of rotation.
- **4.5 Dummy substrate:** A layer which may be transparent or not, provided for the mechanical support of the disk and/or a recording layer.
- **4.6 Embossed mark:** A mark so formed as to be unalterable by optical means.
- **4.7 Entrance surface:** The surface of the disk onto which the optical beam first impinges.
- **4.8 Land and Groove:** A trench-like feature of the disk, applied before the recording of any information, and used to define the track location. The groove is located nearer to the entrance surface than the land. The recording is made either on the centre of the groove or on the centre of the land.
- **4.9 Mark:** A feature of the Recording layer which may take the form of an amorphous domain, a pit, or any other type or form that can be sensed by the optical system. The pattern of marks and spaces represents the data on the disk.
- **4.10 Phase change:** A physical effect by which the area of a recording layer irradiated by a laser beam is heated so as to change from an amorphous state to a crystalline state and vice versa.
- **4.11 Polarization:** The direction of polarization of an optical beam is the direction of the electric vector of the beam.

Note - The plane of polarization is the plane containing the electric vector and the direction of propagation of the beam. The polarization is right-handed when to an observer looking in the direction of propagation of the beam, the end-point of the electric vector would appear to describe an ellipse in the clockwise sense.

- **4.12** Recording layer: A layer of the disk on, or in, which data is written during manufacture and/or use.
- **4.13 Sector:** The smallest addressable part of a track in the Information Zone of a disk that can be accessed independently of other addressable parts.

 <u>ISO/IEC 16824:1999</u>
- 4.14 Space: A feature of the recording layer, which may take the form of a crystalline domain, a non-pit or any other type or form that can be sensed by the optical system. The pattern of marks and spaces represents the data on the disk.
- **4.15 Substrate:** A transparent layer of the disk, provided for mechanical support of the recorded layer(s), through which the optical beam can access a recording layer.
- **4.16** Track: A 360° turn of a continuous spiral.
- **4.17 Track pitch:** The distance between centrelines of adjacent tracks (a groove and a land), measured in a radial direction.
- **4.18 ZCLV:** A disk format requiring Zoned Constant Linear Velocity operations.
- **4.19 Zone:** An annular area of the disk.

5 Conventions and notations

5.1 Representation of numbers

A measured value is rounded off to the least significant digit of the corresponding specified value. For instance, it implies that a specified value of 1,26 with a positive tolerance of +0,01 and a negative tolerance of -0,02 allows a range of measured values from 1,235 to 1,275.

Numbers in decimal notations are represented by the digits 0 to 9.

Numbers in hexadecimal notation are represented by the hexadecimal digits 0 to 9 and A to F in parentheses.

The setting of bits is denoted by ZERO and ONE.

Numbers in binary notations and bit patterns are represented by strings of digits 0 and 1, with the most significant bit shown to the left.

Negative values of numbers in binary notation are given as Two's complement.

© ISO/IEC ISO/

In each field the data is recorded so that the most significant byte (MSB), identified as Byte 0, is recorded first and the least significant byte (LSB) last.

In a field of 8n bits, bit $b_{(8n-1)}$ shall be the most significant bit (msb) and bit b_0 the least significant bit (lsb). Bit $b_{(8n-1)}$ is recorded first.

A binary digit which can be set indifferently to ZERO or to ONE is represented by "x".

5.2 Names

The names of entities, e.g. specific tracks, fields, zones, etc. are given a capital initial.

6 List of acronyms

AM	Address Mark	NRZ	Non Return to Zero
BCA	Burst Cutting Area	NRZI	Non Return to Zero Inverted
BPF	Band Pass Filter	PA	Postamble
DC	Direct Current	PDL	Primary Defect List
DCC	DC Component Suppress Control	PED	P(ID) Error Detection code
DDS	Disk Definition Structure	PI	Parity of Inner-code
DMA	Defect Management Area	PID	Physical Identification Data
DSV	Digital Sum Value	PLL	Phase Locked Loop
ECC	Error Correction Code	PO	Parity of Outer-code
EDC	Error Detection Code	PS	Pre-Synchronous code
FRM	Forced Reassignment Marking	RS	Reed-Solomon code
HF	High Frequency	SDL	Secondary Defect List
ID	Identification Data Toh CT AND AD	SYNC Code	Synchronous Code
IED	ID Error Detection code	VFO	Variable Frequency Oscillator
LPF	Low Pass Filter (standards	ZCLV ai)	Zoned Constant Linear Velocity
LSN	Logical Sector Number	·ittii.aij	

ISO/IEC 16824:1999

7 General description of the optical disk

The optical disk that is the subject of this International Standard consists of two substrates bonded together by an adhesive layer, so that the recording layer(s) is on the inside. The centring of the disk is performed on the edge of the centre hole of the assembled disk on the side currently read. Clamping is performed in the Clamping Zone. This International Standard provides for two Types of such disks.

- **Type 1S** consists of a substrate, a single recording layer and a dummy substrate. The recording layer can be accessed from one side only. The nominal capacity is 2,6 Gbytes.
- **Type 2S** consists of two substrates and two recording layers. From one side of the disk, only one of these recording layers can be accessed. The nominal capacity is 5,2 Gbytes.

Alternatively, in Type 1S, the recording layer may be placed, for instance embossed, on the dummy substrate.

When used with the case specified in International Standard ISO/IEC 16825, a disk of Type 1S may be enclosed in either of the three case Types; a disk of Type 2S is to be enclosed only in a Type 1 case.

Data can be written onto the disk as marks in the form of amorphous spots in the crystalline recording layer and can be overwritten with a focused optical beam, using the phase change effect between amorphous and crystalline states. The data can be read with a focused optical beam, using phase change effect as the reflective difference between amorphous and crystalline states. The beam accesses the recording layer through a transparent substrate of the disk.

Part of the disk contains read-only data for the drive in the form of pits embossed by the manufacturer. This data can be read using the diffraction of the optical beam by the embossed pits.

Figure 1 shows schematically the two Types.

ISO/IEC 16824:1999 (E) © ISO/IEC

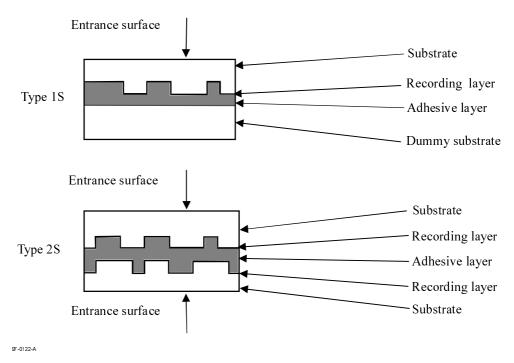


Figure 1 - Types of 120 mm DVD-RAM disks

Teh STANDARD PREVIEW

8 General requirement

Environments 8.1

(standards.iteh.ai)

Test environment

ISO/IEC 16824:1999

In the test environment, the air immediately surrounding the disk shall have the following properties.

: 23 °C <u>**</u> 2d Cfc 212/iso-iec-16824-1999 Temperature

 $: 50 \% \pm 5 \%$ Relative humidity : 86 kPa to 106 kPa Atmospheric pressure

No condensation on or in the disk shall occur. Before testing, the disk shall be conditioned in this environment for 48 hours minimum. It is recommended that, before testing, the entrance surface of the optical disk shall be cleaned according to the instructions of the manufacturer of the disk.

Unless otherwise stated, all tests and measurements shall be made in this test environment.

8.1.2 **Operating environment**

This International Standard requires that a disk which meets all requirements of this International Standard in the specified test environment shall provide data interchange over the specified ranges of environmental parameters in the operating environment.

The operating environment is the environment where the air immediately surrounding the disk has the following properties.

: 5 °C to 60 °C Temperature Relative humidity : 3 % to 85 % $: 1 \text{ g/m}^3 \text{ to } 30 \text{ g/m}^3$ Absolute humidity : 10 °C/h max. Temperature gradient Relative humidity gradient : 10 %/h max.

No condensation on the disk shall occur. If the disk has been exposed to conditions outside those specified above, it shall be acclimatized in the operating environment for at least 2 h before use.

© ISO/IEC 16824:1999 (E)

8.1.3 Storage environment

The storage environment is defined as an environment where the air immediately surrounding the disk shall have the following properties.

Temperature : -10 °C to 50 °C
Relative humidity : 3 % to 85 %
Absolute humidity : 1 g/m³ to 30 g/m³
Atmospheric pressure : 75 kPa to 106 kPa
Temperature gradient : 10 °C/h max.
Relative humidity gradient : 10 %/h max.

No condensation on the disk shall occur.

8.1.4 Transportation

This International Standard does not specify requirements for transportation; guidance is given in annex K.

8.2 Safety requirement

The optical disk shall satisfy the safety requirements of IEC 950, when used in the intended manner or in any foreseeable use in an information processing system.

8.3 Flammability

The disk shall be made from materials that comply with the flammability class for HB materials, or better, as specified in IEC 950.

9 Reference Drive Tob STANDARD PREVIEW

The Reference Drive shall be used for the measurement of optical parameters for conformance with the requirements of this International Standard. The critical components of this device have the characteristics specified in this clause.

9.1 Optical Head

The basic set-up of the optical system of the Reference Drive used for measuring the overwrite and read parameters are shown in figure 2. Different components and locations of components are permitted, provided that the performance remains the same as that of the set-up in figure 2. The optical system shall be such that the detected light reflected from the entrance surface of the disk is minimized so as not to influence the accuracy of the measurements.

ISO/IEC 16824:1999 (E) © ISO/IEC

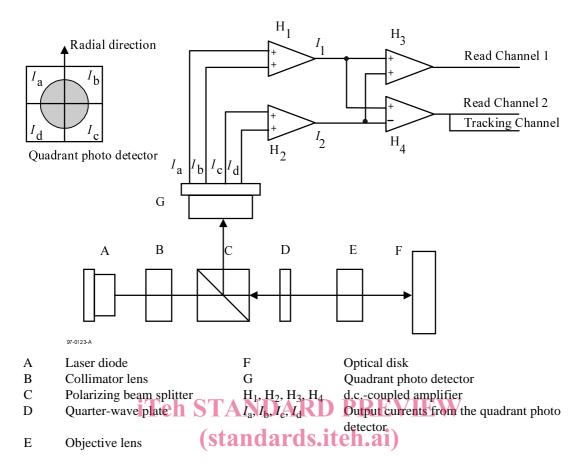


Figure 2 - Optical system of the Reference Drive

https://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-

The combination of polarizing beam splitter C and a quarter-wave plate D shall separate the entrance optical beam from a laser diode A and the reflected optical beam from an optical disk F. The beam splitter C shall have a p-s intensity reflectance ratio of at least 100.

The focused optical beam used for writing and reading data shall have the following properties:

a)	Wavelength (λ)	+10 nm 650 nm -5 nm
		-5 IIII
a)	Polarization	circularly polarized light
b)	Polarizing beam splitter	shall be used unless otherwise stated.
c)	Numerical aperture	$0,60 \pm 0,01$
d)	Light intensity at the rim of the pupil of the objective lens	30 % to 55 % of the maximum intensity level
a)	Wave front aberration	$0.033~\lambda~rms~max.$

b) Relative Intensity Noise (RIN) of the laser diode 10 log [(a.c. power density/Hz) / d.c. light power] -134 dB/Hz max.

9.2 Read channels

A Read channel 1 shall detect the total amount of light in the exit pupil of the objective lens.

A Read channel 2 shall detect the differential output of the quadrant photo detectors.

Frequency characteristics of the equalizer, characteristics of the PLL, slicer etc. are specified in annex F.

9.3 Rotation speed

The actual rotation speed shall be within 1 % of the nominal rotation speed(s) specified in table 3.

9.4 Disk clamping

Clamping force $: 2,0 \text{ N} \pm 0,5 \text{ N}$

Tapered cone angle $: 40.0^{\circ} \pm 0.5^{\circ}$ (see annex E)

9.5 Normalized servo transfer function

In order to specify the servo system for axial and radial tracking, a function H_s is used (equation I). It specifies the nominal values of the open-loop transfer function H of the Reference Servo(s) in the frequency range 23,1 Hz to 10 kHz.

$$H_s(i\omega) = \frac{1}{3} \times \left(\frac{\omega_o}{i\omega}\right)^2 \times \frac{1 + \frac{3i\omega}{\omega_o}}{1 + \frac{i\omega}{3\omega_o}}$$
 (I)

where

 $\omega = 2\pi f$

 $\omega_0 = 2\pi f_0$

 $i = \sqrt{-1}$

 f_0 is the 0 dB crossover frequency of the open loop transfer function. The crossover frequencies of the lead-lag network of the servo are given by

lead break frequency lag break frequency

frequency requency $f_2 = f_0 \times \frac{1}{3}$ TANDARD PREVIEW

Reference Servo for axial tracking

9.6

For an open loop transfer function H of the Reference Servo for axial tracking, | 1+H | is limited as schematically shown by the shaded surface of figure 3_{https://standards.iteh.ai/catalog/standards/sist/cf7def84-670e-4e1b-80c7-}

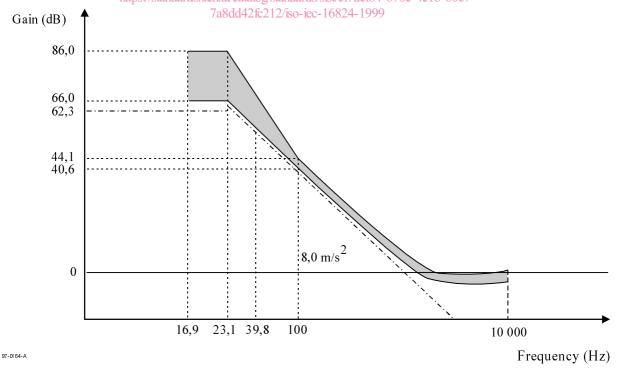


Figure 3 - Reference Servo for axial tracking