SLOVENSKI STANDARD
 SIST EN 13201-3:2016
 01-junij-2016

Nadomešča:
SIST EN 13201-3:2004
SIST EN 13201-3:2004/AC:2005
SIST EN 13201-3:2004/AC:2007

Cestna razsvetljava - 3. del: Izračun lastnosti

Road lighting - Part 3: Calculation of performance

Straßenbeleuchtung - Teil 3: Berechnung der Gütemerkmale (standards.iteh.ai)
Eclairage public - Partie 3: Calcul des performances
https://standards.teh.ai/catalog/standards/sist/9fc3aaf5-a69d-4832-9730-
ada7ac60767d/sist-en-13201-3-2016
Ta slovenski standard je istoveten z: EN 13201-3:2015

ICS:
93.080.40 Cestna razsvetljava in pripadajoča oprema

Street lighting and related equipment
en,fr,de

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 13201-3:2016
https://standards.iteh.ai/catalog/standards/sist/9fc3aaf5-a69d-4832-9730-ada7ac60767d/sist-en-13201-3-2016

English Version

Road lighting - Part 3: Calculation of performance

Eclairage public - Partie 3: Calcul des performances

Straßenbeleuchtung - Teil 3: Berechnung der Gütemerkmale

This European Standard was approved by CEN on 6 June 2015.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakja, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

SIST EN 13201-3:2016
https://standards.iteh.ai/catalog/standards/sist/9fc3aaf5-a69d-4832-9730-ada7ac60767d/sist-en-13201-3-2016

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels
Contents Page
European foreword 4
Introduction 5
1 Scope 6
2 Normative references 6
3 Terminology 6
3.1 Terms and definitions 6
3.2 List of symbols and abbreviations 9
4 Mathematical conventions 11
4.1 General 11
4.2 Decimal places of the requirements 12
5 Photometric data. 12
5.1 General 12
5.2 The I-table 12
5.2.1 System of coordinates and advised angular intervals of the I-table 12
5.2.2 Linear interpolation in the I-table 14
5.3 The r-table 16
5.3.1 The r-table format 16
5.3.2 Linear interpolation in the r-table 19
6 Calculation of $I(C, \gamma)$ 19
6.1 General 19
6.2 Mathematical conventions for distances measured on the road 19
6.3 Mathematical conventions for rotations 20
6.4 Calculation of C and γ. 22
6.4.1 Calculation of x^{\prime}, y^{\prime} and H^{\prime} : 22
6.4.2 Evaluation of installation azimuth φ 23
6.4.3 Calculation of C 23
6.4.4 Calculation of \boldsymbol{y} 23
7 Calculation of photometric quantities 24
7.1 Luminance 24
7.1.1 Luminance at a point 24
7.1.2 Field of calculation for luminance 25
7.1.3 Position of calculation points 26
7.1.4 Position of observer 27
7.1.5 Luminaires included in calculation 29
7.2 Illuminance 29
7.2.1 General 29
7.2.2 Horizontal illuminance at a point 30
7.2.3 Hemispherical illuminance at a point. 30
7.2.4 Semi-cylindrical illuminance at a point 31
7.2.5 Vertical illuminance at a point 32
7.2.6 Field of calculation for illuminance 33
7.2.7 Position of calculation points 33
7.2.8 Luminaires included in calculation 34
7.2.9 Illuminance on areas of irregular shape 35
8 Calculation of quality characteristics 35
8.1 General 35
8.2 Average luminance 35
8.3 Overall uniformity 35
8.4 Longitudinal uniformity 35
8.5 Threshold increment $f_{\text {TI }}$ 36
8.5.1 Definition and conventional hypotheses 36
8.5.2 Threshold Increment calculation process 38
8.5.3 Threshold increment calculation for C and P lighting classes 39
8.6 Edge Illuminance Ratio R_{EI} 39
9 Ancillary data 41
Annex A (informative) Mathematical information technology conventions and flow chart diagrams 43
A. 1 Mathematical and Information Technology conventions used in addition to Clause 4 to define the variables used in the following logical flow charts of the lighting calculation program 43
A. 2 Linear interpolation in the tables 47
A. 3 Information Technology requirements 49
Annex B (informative) Extended r-table format for low mounting height luminaire 61
Bibliography on. 63

European foreword

This document (EN 13201-3:2015) has been prepared by Technical Committee CEN/TC 169 "Light and lighting", the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2016 and conflicting national standards shall be withdrawn at the latest by June 2016.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 13201-3:2003
In comparison with EN 13201-3:2003, three significant changes were made:

- in the veiling luminance calculation, L_{v}, there is no more test about the contribution of at least 2% of the next luminaire in the row to end the calculation before reaching a distance of 500 m (this is to avoid ambiguous interpretations that can produce different results from different software);
- the default option is about $500 \mathrm{~m}_{\mathrm{r}}$ but there is an alternative to retain only the luminaires of a shorter installation. This last case should be clearly mentioned in the lighting design by the number of luminaires involved in calculation of $f_{\text {IIfind }}$ ards.iteh.ai)
- there is a new formula for calculating veiling luminance L_{v}, for a wider range of θ values. Thus the case where luminaires could be very nearste theaxissof vision of the observer: $0,1^{\circ}<\theta<1,5^{\circ}$ can be evaluated with Formula (38)tandards.iteh.aicatalog/standards/sist/9fe3aaf5-a69d-4832-9730-
ada7ac60767d/sist-en-13201-3-2016
NOTE for programmers: Calculation of threshold increment f_{TI}, (new symbol for TI designation) has changed in the revision of EN 13201-3:2003.

This European Standard was worked out by the Joint Working Group of CEN/TC 169 "Light and lighting" and CEN/TC 226 "Road Equipment", the secretariat of which is held by AFNOR.

EN 13201, Road lighting is a series of documents that consists of the following parts:

- Part 1: Guidelines on selection of lighting classes [Technical Report];
- Part 2: Performance requirements;
- Part 3: Calculation of performance [present document];

- Part 4: Methods of measuring lighting performance;

- Part 5: Energy performance indicators.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Introduction

The calculation methods described in this part of EN 13201 enable road lighting quality characteristics to be calculated by agreed procedures so that results obtained from different designers will have a uniform basis.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 13201-3:2016
https://standards.iteh.ai/catalog/standards/sist/9fc3aaf5-a69d-4832-9730-ada7ac60767d/sist-en-13201-3-2016

1 Scope

This European Standard specifies the conventions and mathematical procedures to be adopted in calculating the photometric performance of road lighting installations designed in accordance with the parameters described in EN 13201-2 to ensure that every lighting calculation is based on the same mathematical principles.

The design procedure of a lighting installation also requires the knowledge of the parameters involved in the described model, their tolerances and variability. These aspects are not considered in this part of EN 13201 but a procedure to analyse their contribution in the expected results is suggested in EN 13201-4 and it can also be used in the design phase.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 13032-1, Light and lighting - Measurement and presentation of photometric data of lamps and luminaires - Part 1: Measurement and file format

EN 13201-2, Road lighting - Part 2: Performance requirements

EN 12665:2011, Light and lighting-h Basic terms and criteria for specifying lighting requirements (standards.iteh.ai)

3 Terminology

SIST EN 13201-3:2016

3.1 Terms and definitions

standards.iteh.ai/catalog/standards/sist/9fc3aaa5-a69d-4832-9730-
ada7ac60767d/sist-en-13201-3-2016
For the purposes of this document, the terms and definitions given in EN 12665:2011 and the following apply.

3.1.1
 vertical photometric angle
 γ

angle between the light path and the downward vertical axis both passing through the luminaire photometric centre

Note 1 to entry: Unit ${ }^{\circ}$ (degree).
Note 2 to entry: The direction $\gamma=0$ is therefore oriented to the nadir.
Note 3 to entry: See Figure 1.

3.1.2
 azimuth

C
angle between the vertical half plane passing through the light path and the reference half plane
Note 1 to entry: I.e. the vertical half plane passing through the second axis of a luminaire, when the luminaire is at its tilt during measurement.

Note 2 to entry: Unit $^{\circ}$ (degree).
Note 3 to entry: See Figure 1.

3.1.3
 angle of incidence
 $\boldsymbol{\varepsilon}$

angle between the light path at a point on a surface and the normal to the surface
Note 1 to entry: Unit ${ }^{\circ}$ (degree).
Note 2 to entry: See Figure 4, Figure 12 and Figure 13.

3.1.4
 angle of deviation
 β

angle between the oriented vertical planes through the observer to the point of observation and from the point of observation through the luminaire (with respect to luminance coefficient)

Note 1 to entry: \quad Unit $^{\circ}$ (degree).
Note 2 to entry: See Figure 4.

3.1.5
 luminance coefficient

q

quotient of the luminance of a surface element in a given direction by the illuminance on the surface element
iTeh STANDARD PREVIEW
Note 1 to entry: Unit sr-1. (Standards.iteh.ai)
Note 2 to entry:
SIST EN 13201-3:2016
$q=\frac{L}{E} \quad$ https:/standards.iteh.ai/catalog/standards/sist/9fc3aaf5-a69d-4832-9730-
where
q is the luminance coefficient, in reciprocal steradians (sr^{-1});
$L \quad$ is the luminance, in candelas per square metre ($\mathrm{cd} \cdot \mathrm{m}^{-2}$);
$E \quad$ is the illuminance, in lux (lx).

3.1.6
 reduced luminance coefficient

r

luminance coefficient of a surface element multiplied by the cube of the cosine of the angle of incidence of the light on the surface element

Note 1 to entry: Unit sr${ }^{-1}$.
Note 2 to entry: This can be expressed by the formula: $r=q \cos ^{3} \varepsilon$ (refer to CIE 66)
where
q is the luminance coefficient, in reciprocal steradians;
$\varepsilon \quad$ is the angle of incidence, in degree.

Note 3 to entry: The angle of observation, α in Figure 4, affects the value of r. In accordance with the requirements specified in EN 13201-2, consider this angle fixed at 1° and this value is adopted for the calculation described in this standard, r is reasonably constant for values of α between $0,5^{\circ}$ and $1,5^{\circ}$.

3.1.7
 tilt during measurement
 $\boldsymbol{\theta}_{\mathrm{m}}$

angle between a defined datum axis on a luminaire and the horizontal when the luminaire is mounted for photometric measurement

Note 1 to entry: \quad Unit $^{\circ}$ (degree).
Note 2 to entry: See Figure 7.
Note 3 to entry: The defined datum axis can be any feature of the luminaire, but generally for a side-mounted luminaire it lies in the mouth of the luminaire canopy, in line with the spigot axis. Another commonly used feature is the spigot entry axis.

3.1.8
 tilt for calculation

$\boldsymbol{\delta}$
difference in angle between the tilt in application and the tilt during measurement of a luminaire
Note 1 to entry: Unit ${ }^{\circ}$ (degree) ${ }^{1}$ Teh STANDARID PREVIEW
Note 2 to entry: See Figure 7.
(standards.iteh.ai)
3.1.9
tilt in application
SIST EN 13201-3:2016
$\boldsymbol{\theta}_{\mathrm{f}}$
angle between a defined datum axis on aduminaire and the horizontal when the luminaire is mounted for field use

Note 1 to entry: \quad Unit $^{\circ}$ (degree).
Note 2 to entry: See Figure 7.
Note 3 to entry: The defined datum axis can be any feature of the luminaire but generally for a side-mounted luminaire it lies in the mouth of the luminaire canopy, in line with the spigot axis. Another commonly used feature is the spigot entry axis.

3.1.10
 orientation
 v

angle a chosen reference direction makes with the $C=0^{\circ}, \gamma=90^{\circ}$ measurement direction of a luminaire when the first photometric axis of the luminaire is vertical

Note 1 to entry: \quad Unit ${ }^{\circ}$ (degree).
Note 2 to entry: When the road is straight the reference direction is longitudinal.
Note 3 to entry: See Figure 6, which illustrates the sign conventions.

3.1.11
 rotation

ψ
angle the first photometric axis of a luminaire makes with the nadir of the luminaire in the plane $C=0^{\circ}$, $C=180^{\circ}$, when the tilt during measurement is zero

Note 1 to entry: \quad Unit $^{\circ}$ (degree).
Note 2 to entry: See Figure 6, which illustrates the sign conventions.

3.1.12

first photometric axis (of a luminaire when measured in the (C, γ) coordinate system)
axis through the photometric centre of a luminaire and perpendicular to the plane which is representative of the main light emitting area

Note 1 to entry: The polar axis of the (C, γ) coordinate system does not necessarily coincide with the first axis of the luminaire if the luminaire is tilted during measurement.

3.1.13
 longitudinal direction

direction parallel to the axis of the road

3.1.14
 transverse direction direction at right angles to the axis of the road

Note 1 to entry: On a curved road the transverse direction is that of the radius of curvature at the point of interest on the road.

SIST EN 13201-3:2016
3.1.15 https $/ / /$ standards.iteh ai/catalog/standards/sist/9fc3aaf5-a69d-4832-9730-
installation azimuth
ada7ac60767d/sist-en-13201-3-2016
φ
angle a chosen reference direction (which is longitudinal for a straight road) makes with the vertical plane through a given point on the road surface and the photometric centre of a luminaire, when the luminaire is at its tilt during measurement

Note 1 to entry: Unit (degree).
Note 2 to entry: See Figure 4.

3.2 List of symbols and abbreviations

The symbols and abbreviations used in this standard are listed in Table 1.
Table 1 - Symbols and abbreviations

Quantity		
Symbol	Name or description	Unit
A_{y}	Age of observer	y
C	Photometric azimuth angle (Figure 1)	${ }^{\circ}($ degree $)$
D	Spacing between calculation points in the longitudinal direction (see Figure 9 and Figure $14)$	m

EN 13201-3:2015 (E)

Quantity		
Symbol	Name or description	Unit
d	Spacing between calculation points in the transverse direction (see Figure 9 and Figure 14)	m
\bar{E}	Generic symbol used for average illuminance	lx
$\bar{E}_{\text {hi }}$	Initial average horizontal illuminance of the lit surface (see 8.5.3)	lx
E_{h}	Horizontal illuminance at a point	lx
$E_{\text {hs }}$	Hemispherical illuminance at a point	lx
$E_{\text {sc }}$	Semi-cylindrical illuminance at a point	lx
E_{V}	Vertical illuminance at a point	lx
f_{M}	Overall maintenance factor	-
$f_{\text {TI }}$	Threshold increment	\%
H	Mounting height of a luminaire	m
$I(C, y)$	Luminous intensity table in the C, y system. Also named I-table	cd
j, m	Integers indicating the row or column of a table	-
\bar{L}	Generic symbol used for average luminance \triangle RD PR1TVIETV	$\mathrm{cd} \cdot \mathrm{m}^{-2}$
$\bar{L}_{\text {i }}$	Initial average horizontal luminance of the lit surface (see 8.5.3)	cd m^{-2}
L_{v}	Equivalent veiling luminance	$\mathrm{cd} \cdot \mathrm{m}^{-2}$
L	Luminance at a point .//standards.iteh.ai/catalog/standards/sist/9fe3aaf5-a69d-4832-9730-	$\mathrm{cd} \cdot \mathrm{m}^{-2}$
N	Number of calculation points in the qongitudinal direction of a grid (see Figure 9 and Figure 14)	-
n	Number of calculation points in the transverse direction of a grid (see Figure 9 and Figure 14)	-
$n_{\text {lu }}$	Number of luminaires considered in the calculation	-
q	Luminance coefficient	sr^{-1}
Q_{0}	Average luminance coefficient	sr^{-1}
r	Reduced luminance coefficient	sr^{-1}
$r(\tan \varepsilon, \beta)$	Reduced luminance coefficient table. Also named r-table	sr^{-1}
$R_{\text {EI }}$	Edge illuminance ratio	-
S	Spacing between luminaires	m
W_{L}	Width of driving lane	m
W_{r}	Width of relevant area or of carriageway	m
$W_{\text {S }}$	Width of strip	m
x	Abscissa in (x, y) coordinate system (Figure 5)	m
y	Ordinate in (x, y) coordinate system (Figure 5)	m
α	Angle of observation of road surface (Figure 4)	${ }^{\circ}$ (degree)

Quantity		
Symbol	Name or description	Unit
α_{k}	angle between the normal to the flat surface of the semicylinder and the vertical plane containing the light path (Figure 12) or angle between the normal to the selected vertical plane and the vertical plane containing the light path (Figure 13)	${ }^{\circ}$ (degree)
β	Angle of deviation (Figure 4)	${ }^{\circ}$ (degree)
ρ	Average diffuse reflection factor of a surface (See 8.5.3)	-
γ	Photometric elevation angle (Figure 1)	${ }^{\circ}$ (degree)
δ	Luminaire tilt for calculation (Figure 6 and Figure 7)	${ }^{\circ}$ (degree)
ε	Angle of incidence (Figure 4)	${ }^{\circ}$ (degree)
ε_{k}	Angle of incidence for semicylindrical and vertical illuminance (Figure 12 and Figure 13)	${ }^{\circ}$ (degree)
θ_{1}	Luminaire tilt in application (Figure 7)	${ }^{\circ}$ (degree)
θ_{m}	Luminaire tilt during measurement (Figure 7)	${ }^{\circ}$ (degree)
$\theta_{\text {к }}$	Angle between the line of sight and the centre of the $k^{\text {th }}$ luminaire (See 8.5 in the formulae)	
v	Orientation of luminaire (Figure 6)	${ }^{\circ}$ (degree)
φ	Installation azimuth (Figure 4)	${ }^{\circ}$ (degree)
ψ	Rotation of luminaire'(Figure 6)	${ }^{\circ}$ (degree)

standards.iteh.ai)

4 Mathematical conventions

SIST EN 13201-3:2016

4.1 General hitps://standards.iteh ai/catalogstandards/sist/9fc3aa(5-a69d-4832-9730-
 ada7ac60767d/sist-en-13201-3-2016

The basic conventions made in the mathematical procedures described in this standard are:
a) the luminaire is regarded as a point source;
b) light reflected from the surrounds and inter-reflected light is disregarded;
c) obstruction to the light from luminaires by trees and other objects is disregarded;
d) the atmospheric absorption is zero;
e) the road surface is flat and level and has uniform reflecting properties over the area considered;
f) the evaluation in I-tables and r-tables shall be obtained by linear interpolation.

In case of continuous lines of luminaires, generally at low mounting height, it is advisable to check whether the distance between the optical centre of each luminaire to the nearest point of the grid of calculation is greater than or equal to five times the length of the luminous area of a single luminaire. If this is not the case it might be necessary to simulate near-field photometry by fragmenting the luminaire into virtual point light sources of the same light distribution as the entire luminaire. The luminous flux of each virtual light source is an equal proportion of the total luminous flux for the luminaire.

4.2 Decimal places of the requirements

The calculation results shall be presented in the form and with at least the number of digits given in the tables of requirements of EN 13201-2, shown in Table 2.

Table 2 - Number of decimal digits of the lighting requirements

	\bar{L}	U_{o}	U_{I}	f_{TI}	R_{EI}	$\bar{E}<10 \mathrm{~lx}$	$10 \mathrm{~lx} \leq \bar{E} \leq 20 \mathrm{~lx}$	$\bar{E}>20 \mathrm{~lx}$
Number of decimal places	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$

5 Photometric data

5.1 General

Photometric data for the light distribution of the luminaires used in the lighting installation are needed for calculating the lighting quality characteristics in this standard. These data are in the form of an intensity table (I-table) which gives the distribution of luminous intensity emitted by the luminaire in all relevant directions. When luminance calculations are to be made, photometric data for the light reflecting properties of the road surface are required in the form of an r-table.

Interpolation is needed in using both these tables to enable values to be estimated for directions between the tabulated angles. ${ }^{\circ}$ Teh STANDARD PREVTHW

5.2 The I-table

(standards.iteh.ai)

5.2.1 System of coordinates and advised angular intervals of the I-table

For calculations made in accordance with this standard, an intensity table (1-table) that describes the behaviour of the luminaire with the required accuracy by the aim of calculation shall be used. This I table shall be prepared in accordance with EN 13032-1. The coordinate system used for road lighting luminaires is the C-planes system, shown in Figure 1. For floodlight installations, the intensity distribution measured in the B-planes system may be accepted if the calculation program can transfer the intensity values in the C-planes system. In Figure 1, the luminaire is shown at its tilt during measurement.

Luminous intensity shall be expressed in candelas.
The luminous flux used in calculation shall be declared in the calculation report.
Unless specific conditions are mentioned in the calculation report, the luminous flux used shall be that of the light source mentioned in the data sheet of the luminaire.
If the luminous intensity table is given in candelas per kilolumen ($\mathrm{cd} \cdot \mathrm{klm}^{-1}$), its values shall be converted in candelas, considering the luminous flux of all the light sources in the luminaire.

Key
1 luminaire at tilt during measurement
2 longitudinal direction
3 vertical direction
4 direction of luminous intensity
Figure 1 - Orientation of \boldsymbol{C}, $\boldsymbol{\gamma}$ coordinate system in refation to longitudinal direction of ada7ac60767d carriagewāy-2016

Maximum angular intervals stipulated in this standard have been selected to give acceptable levels of interpolation accuracy.

In the (C, γ) system of coordinates, luminous intensities shall be provided at the angular intervals stated below.

For all luminaires the angular intervals in vertical planes (γ) shall at most be $2,5^{\circ}$ from 0° to 180°. In azimuth the intervals shall be varied according to the symmetry of the light distribution from the luminaire as follows:
a) luminaires with no symmetry: the intervals shall at most be 5°, starting at 0°, when the luminaire is at its tilt during measurement, and ending at 355°;
b) luminaires with nominal symmetry about the $C=270^{\circ}-90^{\circ}$ plane: the intervals shall at most be 5°, starting at 270°, when the luminaire is at its tilt during measurement, and ending at 90°;
c) luminaires with nominal symmetry about the $C=270^{\circ}-90^{\circ}$ and $C=0^{\circ}-180^{\circ}$ planes: the intervals shall at most be 5°, starting at 0°, when the luminaire is at its tilt during measurement, and ending at 90°;
d) luminaires with nominally the same light distribution in all C-planes: only one representative set of measurements in a vertical (C-plane) is needed.

