

SLOVENSKI STANDARD SIST ISO 16269-7:2010

01-julij-2010

Statistično tolmačenje podatkov - 7. del: Mediana - Ocena in intervali zaupanja

Statistical interpretation of data - Part 7: Median - Estimation and confidence intervals

Interprétation statistique des données Partie 7: Médiane - Estimation et intervalles de confiance

(standards.iteh.ai)

Ta slovenski standard je istoveten z: ISO 16269-7:2001

https://standards.iteh.ai/catalog/standards/sist/d380f9ef-fb2b-4abe-b42d-15266bc83434/sist-iso-16269-7-2010

<u>ICS:</u>

03.120.30 Uporaba statističnih metod

Application of statistical methods

SIST ISO 16269-7:2010

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 16269-7:2010 https://standards.iteh.ai/catalog/standards/sist/d380f9ef-fb2b-4abe-b42d-15266bc83434/sist-iso-16269-7-2010

INTERNATIONAL STANDARD

ISO 16269-7

First edition 2001-03-01

Statistical interpretation of data —

Part 7: Median — Estimation and confidence intervals

iTeh Share - Estimation et intervalles de confiance (standards.iteh.ai)

<u>SIST ISO 16269-7:2010</u> https://standards.iteh.ai/catalog/standards/sist/d380f9ef-fb2b-4abe-b42d-15266bc83434/sist-iso-16269-7-2010

Reference number ISO 16269-7:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 16269-7:2010</u> https://standards.iteh.ai/catalog/standards/sist/d380f9ef-fb2b-4abe-b42d-15266bc83434/sist-iso-16269-7-2010

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch

Printed in Switzerland

Contents

1	Scope1
2	Normative references1
3	Terms, definitions and symbols1
4	Applicability2
5	Point estimation2
6	Confidence interval
Annex	A (informative) Classical method of determining confidence limits for the median
Annex	B (informative) Examples

Forms

Form A — Calculation of an estimate of a median	9
Form B — Calculation of a confidence interval for a median	.11

Table

iTeh STANDARD PREVIEW

Table 1 — Exact values of k for sample sizes varying from 5 to 100; one-sided case	4
Table 2 — Exact values of k for sample sizes varying from 5 to 100: two-sided case	
Table 3 — Values of <i>u</i> and <i>c</i> for the one-sided case	6
Table 4 — Values of u and c for the two-sided case <u>16269-7:2010</u>	6
https://standards.iteh.ai/catalog/standards/sist/d380f9ef-fb2b-4abe-b42d-	
15266bc83434/sist-iso-16269-7-2010	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 16269 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 16269-7 was prepared by Technical Committee ISO/TC 69, *Applications of statistical methods*, Subcommittee SC 3, *Application of statistical methods in standaridization*.

ISO 16269 consists of the following parts, under the general title Statistical interpretation of data:

— Part 7: Median — Estimation and confidence intervals RD PREVIEW

The following will be the subjects of future parts to ISO 16269: iteh.ai)

- Part 1: Guide to statistical interpretation of data SIST ISO 16269-7:2010
- Part 2: Presentation of statistical data iteh.ai/catalog/standards/sist/d380f9ef-fb2b-4abe-b42d-15266bc83434/sist-iso-16269-7-2010
- Part 3: Tests for departure from normality
- Part 4: Detection and treatment of outliers
- Part 5: Estimation and tests of means and variances for the normal distribution, with power functions for tests
- Part 6: Determination of statistical tolerance intervals

Annexes A and B of this part of ISO 16269 are for information only.

Statistical interpretation of data —

Part 7: Median — Estimation and confidence intervals

1 Scope

This part of ISO 16269 specifies the procedures for establishing a point estimate and confidence intervals for the median of any continuous probability distribution of a population, based on a random sample size from the population. These procedures are distribution-free, i.e. they do not require knowledge of the family of distributions to which the population distribution belongs. Similar procedures can be applied to estimate quartiles and percentiles.

NOTE The median is the second quartile and the fiftieth percentile. Similar procedures for other quartiles or percentiles are not described in this part of ISO 16269.

iTeh STANDARD PREVIEW (standards.iteh.ai)

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 16269. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 16269 are encouraged to investigate the possibility of applying the most recent editions of the hormative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 2602, Statistical interpretation of test results — Estimation of the mean — Confidence interval.

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: Probability and general statistical terms.

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this part of ISO 16269, the terms and definitions given in ISO 2602 and ISO 3534-1 and the following apply.

3.1.1

*k*th order statistic of a sample

value of the *k*th element in a sample when the elements are arranged in non-decreasing order of their values

NOTE For a sample of *n* elements arranged in non-decreasing order, the *k*th order statistics is $x_{[k]}$ where

 $x_{[1]} \leq x_{[2]} \leq \dots \leq x_{[n]}$

SIST ISO 16269-7:2010

ISO 16269-7:2001(E)

3.1.2

median of a continuous probability distribution

value such that the proportions of the distribution lying on either side of it are both equal to one half

NOTE In this part of ISO 16269, the median of a continuous probability distribution is called the population median and is denoted by *M*.

3.2 Symbols

- *a* lower bound to the values of the variable in the population
- *b* upper bound to the values of the variable in the population
- C confidence level
- *c* constant used for determining the value of *k* in equation (1)
- *k* number of the order statistic used for the lower confidence limit
- *M* population median
- n sample size
- T_1 lower confidence limit derived from a sample
- T₂ upper confidence limit derived from a sample
- *u* fractile of the standardized normal distribution
- *x*_[*i*] *i*th smallest element in a sample when the elements are arranged in a non-decreasing order of their values
- \tilde{x} sample median <u>SIST ISO 16269-7:2010</u> https://standards.iteh.ai/catalog/standards/sist/d380f9ef-fb2b-4abe-b42d-
- y intermediate value calculated to determine k using equation (1)⁻²⁰¹⁰

4 Applicability

The method described in this part of ISO 16269 is valid for any continuous population, provided that the sample is drawn at random.

NOTE If the distribution of the population can be assumed to be approximately normal, the population median is approximately equal to the population mean and the confidence limits should be calculated in accordance with ISO 2602.

5 Point estimation

A point estimate of the population median is given by the sample median, \tilde{x} . The sample median is obtained by numbering the sample elements in non-decreasing order of their values and taking the value of

- the [(n + 1)/2]th order statistic, if *n* is odd, or
- the arithmetic mean of the (n/2)th and [(n/2) + 1]th order statistics, if *n* is even.

NOTE This estimator is in general biased for asymmetrical distributions, but an estimator that is unbiased for any population does not exist.

6 Confidence interval

6.1 General

A *two-sided confidence interval* for the population median is a closed interval of the form $[T_1, T_2]$, where $T_1 < T_2$; T_1 and T_2 are called the *lower* and *upper confidence limits*, respectively.

If *a* and *b* are respectively the lower and upper bounds of the variable in the population, a *one-sided confidence interval* will be of the form $[T_1, b)$ or of the form $(a, T_2]$.

NOTE For practical purposes, *a* is often taken to be zero for variables that cannot be negative, and *b* is often taken to be infinity for variables with no natural upper bound.

The practical meaning of a confidence interval is that the experimenter claims that the unknown M lies within the interval, while admitting a small nominal probability that this assertion may be wrong. The probability that intervals calculated in such a way cover the population median is called the confidence level.

6.2 Classical method

The classical method is described in annex A. It involves solving a pair of inequalities. Alternatives to solving these inequalities are given below for a range of confidence levels.

6.3 Small samples ($5 \le n \le 100$)

The values of k satisfying the equations in annex A for eight of the most commonly used confidence levels for sample sizes varying from 5 to 100 sampling units are given in Table 1 for the one-sided case and in Table 2 for the two-sided case. The values of k are given such that the lower confidence limit is

 $T_1 = x_{[k]}$

(standards.iteh.ai)

and the upper confidence limit is https://standards.iteh.ai/catalog/standards/sist/d380f9ef-fb2b-4abe-b42d-15266bc83434/sist-iso-16269-7-2010

 $T_2 = x_{[n-k+1]}$

where $x_{[1]}, x_{[2]}, ..., x_{[n]}$ are the ordered observed values in the sample.

For small values of n, it can happen that confidence limits based on order statistics are unavailable at certain confidence levels.

An example of the calculation of the confidence limits for small samples is given in B.1 and shown in Form A of annex B.