

Designation: B313/B313M – $02^{\varepsilon 1}$

Standard Specification for Aluminum and Aluminum-Alloy Round Welded Tubes¹

This standard is issued under the fixed designation B313/B313M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

 ε^1 Note—Safety caveat added and editorial changes were made in November 2003

1. Scope*

1.1 This specification covers aluminum and aluminum-alloy tubes made from formed sheet and seam welded by continuous methods.

1.2 Alloy (Note 1) and temper designations are in accordance with ANSI H35.1 [H35.1M]. The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E527.

NOTE 1—Throughout this specification use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.

Note 2—For the requirements for sheet see Specification B209.

1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.

1.4 The values stated in either inch-pound or SI units are to be regarded separately as standards. The SI units are shown either in brackets or in separate tables. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from two systems will result in nonconformance with the specification.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 The following documents of the issue in effect on the date of material purchase form a part of this specification to the extent referenced herein:

2.2 ASTM Standards: ²

- B209 Specification for Aluminum and Aluminum-Alloy Sheet and Plate ²
- B557 Test Methods for Tension Testing Wrought and Cast

Aluminum- and Magnesium-Alloy Products²

- **B557M** Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)²
- **B660** Practices for Packaging/Packing of Aluminum and Magnesium Products²
- B666/B666M Practice for Identification Marking of Aluminum and Magnesium Products²
- B918 Practice for Heat Treatment of Wrought Aluminum Alloys ³
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications ⁴
- E34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys ⁴
- **E55** Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition ⁴
- E227 Test Method for Optical Emission Spectrometric Analysis of Aluminum and Aluminum Alloys by the Point-to-Plane Technique⁵⁶
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)⁴
- E607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere ⁴m-b313-b313m-02e1
- E716 Practices for Sampling Aluminum and Aluminum Alloys for Spectrochemical Analysis ⁴
- E1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Atomic Emission Spectrometry
- 2.3 ANSI Standards:
- H35.1 Alloy and Temper Designation Systems for Aluminum²
- H35.1M Alloy and Temper Designation Systems for Aluminum (Metric)
- H35.2 Dimensional Tolerances for Aluminum Mill Products²
- H35.2M Dimensional Tolerances for Aluminum Mill Products (Metric)
- 2.4 Military Standard:

*A Summary of Changes section appears at the end of this standard.

¹ This specification is under the jurisdiction of the ASTM Committee B07 on Light Metals and Alloys and is the direct responsibility of Subcommittee B07.03 on Aluminum Alloy Wrought Products.

Current edition approved Nov. 11, 2003. Published January 2003. Originally approved in 1956. Last previous edition approved in 2000 as B313/B313M-00. DOI: 10.1520/B0313_B0313M-02E01.

² Annual Book of ASTM Standards, Vol 02.02.

³ Annual Book of ASTM Standards, Vol 14.02.

⁴ Annual Book of ASTM Standards, Vol 03.05.

⁵ Withdrawn. The last approved version of this historical standard is referenced on www.astm.org.

⁶ Annual Book of ASTM Standards, Vol 01.01.

∰ B313/B313M – 02^{ε1}

TABLE 1 Chemical Composition Limits^{A,B,C}

Alloy	Silicon	luc a	0		Magnasium	Ohmensium	7:	Tita-	Other Elements ^D		
Alloy	Silicon	Iron	Copper	Manganese	Magnesium	Chromium	Zinc	nium	Each	Each Total ^E	Aluminum
1100	F	F	0.05-0.20	0.05			0.10		0.05	0.15	99.0 min ^G
3003	0.6	0.7	0.05-0.20	1.0-1.5			0.10		0.05	0.15	remainder
3004	0.30	0.7	0.25	1.0-1.5	0.8-1.3		0.25		0.05	0.15	remainder
Alclad 3004	3004 clad with alloy 7072										
3005	0.6	0.7	0.30	1.0-1.5	0.20-0.6	0.10	0.25	0.10	0.05	0.15	remainder
5050	0.40	0.7	0.20	0.10	1.1-1.8	0.10	0.25		0.05	0.15	remainder
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10		0.05	0.15	remainder
5086	0.40	0.50	0.10	0.20-0.7	3.5-4.5	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5154	0.25	0.40	0.10	0.10	3.1-3.9	0.15-0.35	0.20	0.20	0.05	0.15	remainder
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8-1.2	0.04-0.35	0.25	0.15	0.05	0.15	remainder
7072 ^{<i>H</i>}	1	1	0.10	0.10	0.10		0.8–1.3		0.05	0.15	remainder

^A Limits are in percent maximum unless shown as a range or stated otherwise.

^B Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these limits, an observed value or a calculated value attained from analysis shall be rounded to the nearest unit in the last righthand place of figures used in expressing the specified limit, in accordance with the rounding method of Practice E29.

^DOthers includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in this specification. However, such analysis is not required and may not cover all metallic *Others* elements. Should any analysis by the producer or the purchaser establish that an *Others* element exceeds the limit of *Each* or that the aggregate of several *Others* elements exceeds the limit of *Total*, the material shall be considered nonconforming.

^EOther Elements—Total shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum. ^F Iron plus silicon shall not exceed 0.95 %.

^G The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

^{*H*} Composition of cladding alloy as applied during the course of manufacture. Samples from finished tube shall not be required to conform to these limits. ^{*I*} Iron plus silicon shall not exceed 0.7 %.

MIL-STD-129 Marking for Shipment and Storage⁷

2.5 AMS Specification:

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials⁸

2.6 Federal Standard:

Fed. Std. No. 123 Marking for Shipment (Civil Agencies)⁷

3. Terminology

3.1 Definitions:

3.1.1 *producer*—the primary manufacturer of the material.

3.1.2 *supplier*—includes only the category of jobbers and distributors as distinct from producers.

3.1.3 *welded tube*—a tube produced by forming and seam-welding sheet longitudinally.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *capable of*—The term *capable of* as used in this specification means that the test need not be performed by the producer of the material. However, should testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

4.1 Orders for material to this specification shall include the following information:

4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),

NOTE 3—For inch-pound orders specify Specification B313; for metric orders specify Specification B313M. Do not mix units.

4.1.2 Quantity in pieces or pounds, [kilograms]

4.1.3 Alloy (6.1),

4.1.4 Temper (Section 8),

4.1.5 Size (outside diameter, wall thickness, and length),

4.2 Additionally, orders for material to this specification shall include the following information when required by the purchaser:

4.2.1 Whether heat treatment in accordance with Practice B918 is required,

4.2.2 Special tension tests required other than tension tests performed on specimens taken from the sheet prior to welding (8.2),

4.2.3 Whether pressure or burst test is required and test description if methods 1, 2, or 3 of 9.1 are not suitable,

4.2.4 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (Section 13),

4.2.5 Whether certification of the material is required (Section 17),

4.2.6 Whether marking for identification is required (15.1), and

4.2.7 Whether Practices B660 applies, if so, the levels of preservation, packaging, and, packing required (16.3).

5. Responsibility for Quality Assurance

5.1 *Responsibility for Inspection and Tests*—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. Except as otherwise specified in the contract or order, the producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to assure that material conforms to prescribed requirements.

⁷ Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700 Robbins Ave., Philadelphia, PA 19111-5094, Attn: NPODS.

⁸ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001.

5.2 Lot Definition—An inspection lot shall be defined as follows:

5.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions traceable to a heat-treat lot or lots and subjected to inspection at one time. 5.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and nominal dimensions subjected to inspection at one time.

-	Specified	Specified Tensile Strength, ksi		Yield Strength (Elongation in 2 in.	
Temper	in.	min	max	min	max	— or 4× Diameter, min,%
			Aluminum 1100			
0	0.032-0.050	11.0	15.5	3.5		25
	0.051-0.125	11.0	15.5	3.5		30
H12	0.032-0.050	14.0	19.0	11.0		6
	0.051-0.113	14.0	19.0	11.0		8
	0.114-0.125	14.0	19.0	11.0		9
H14	0.032-0.050	16.0	21.0	14.0		4
	0.051-0.113	16.0	21.0	14.0		5
	0.114-0.125	16.0	21.0	14.0		6
H16	0.032-0.050	19.0	24.0	17.0		3
	0.051-0.125	19.0	24.0	17.0		4
H18	0.032-0.050	22.0				3
1110	0.051-0.125	22.0				4
		iTeh	Alloy 3003	rds		
0	0.032-0.050	14.0	19.0	5.0		23
	0.051-0.125	14.0	19.0	5.0		25
H12	0.032-0.050	17.0	23.0	12.0		5
1112	0.051-0.113	17.0	23.0	12.0		6
	0.114-0.125	17.0	23.0 Pr	12.0		7
H14	0.032-0.050	20.0	26.0	17.0		4
1114	0.051-0.113	20.0	26.0	17.0		5
	0.114-0.125	20.0 ASTN	(B313 26.013 M-	02e1 17.0		6
/stH16	iteh 0.032–0.050 d/star	24.0 t/e54	$d_{2}(1) = \frac{30.07 - 41b}{1}$)-bcfl_21.042acc	3bb6/as tm -b31	3-b313m- 3)2e1
	0.051-0.125	24.0	30.0	21.0		4
H18	0.032-0.050	27.0		24.0		3
	0.051-0.125	27.0		24.0		4
			Alloy 3004			
0	0.032-0.050	22.0	29.0	8.5		16
	0.051-0.125	22.0	29.0	8.5		18
H32	0.032-0.050	28.0	35.0	21.0		4
	0.051-0.113	28.0	35.0	21.0		5
	0.114–0.125	28.0	35.0	21.0		6
H34	0.032-0.050	32.0	38.0	25.0		3
	0.051-0.113	32.0	38.0	25.0		4
	0.114-0.125	32.0	38.0	25.0		5
H36	0.032-0.050	35.0	41.0	28.0		3
	0.051-0.125	35.0	41.0	28.0		4
H38	0.032-0.050	38.0		31.0		3
100	0.051-0.125	38.0		31.0		4
			Alloy Alclad 3004			
0	0.032-0.050	21.0	28.0	8.0		18
	0.051-0.125	21.0	28.0	8.0		16
H32	0.032-0.050	27.0	34.0	20.0		4
	0.051-0.113	27.0	34.0	20.0		5
	0.114-0.125	27.0	34.0	20.0		6

TABLE 2 Tensile Property Limits, Inch-Pound Units^{A,B,C}

∰ B313/B313M – 02^{€1}

	Specified	- ·· -	Music allo 1	Vialal Other anth (0.0.9)	-#	Elenantica in 0 in
Temper	Specified Thickness,		trength, ksi	Yield Strength (0.2 %	offset), ksi	Elongation in 2 in or 4× Diameter
	in.	min	max	min	max	min,%
H34	0.032-0.050	31.0	37.0	24.0		3
	0.051-0.113	31.0	37.0	24.0		4
	0.114–0.125	31.0	37.0	24.0		5
H36	0.032-0.050	34.0	40.0	27.0		3
	0.051-0.125	34.0	40.0	27.0		4
H38	0.032-0.050	37.0				3
	0.051-0.125	37.0				4
			Alloy 3005			
0	0.032-0.050	17.0	24.0	6.5		18
	0.051-0.125	17.0	24.0	6.5		20
H12	0.032-0.050	20.0	27.0	17.0		2
1112	0.051-0.113	20.0	27.0	17.0		3
	0.114-0.125	20.0	27.0	17.0		4
	0.114 0.125	20.0	27.0	17.0		7
H14	0.032-0.050	24.0	31.0	21.0		2
	0.051-0.113	24.0	31.0	21.0		3
	0.114–0.125	24.0	31.0	21.0		4
H16	0.032-0.113	28.0	35.0	25.0		2
IIIO	0.114-0.125	28.0	35.0	25.0		3
H18	0.032-0.125	32.0		29.0		2
1110	0.032-0.123	52.0	 Alloy 5050	23.0	•••	2
0	0.032–0.113 0.113–0.125	18.0 18.0	24.0 24.0	C S ^{6.0} 6.0		20 22
1100	0.000.0.050	00.0	00.0			4
H32	0.032–0.050 0.051–0.125	22.0 22.0	28.0 28.0			4 6
H34	0.032-0.050	25.0	31.0	20.0		4
1104	0.051-0.125	25.0	men 31.0 Pr	20.0		5
H36	0.032-0.050	27.0	33.0	22.0		3
1100	0.051-0.125	27.0	33.0	22.0		4
1100	0.000.0.050	ASTN				0
H38	0.032-0.050	29.0				
	- 0 051 0 125 c/) haft 0.042 and 2 h	6/astm h21	$\frac{3}{2}$ h212m 102c1
/ Buildu	rds.iteh0.051–0.125g/	standard 29.0 t/e54)eda0-3 ¹ / ₈ 7-41b()-bcf1-9e942acc3bb	6/astm-b31	3-b313m-4)2e1
- Standa		standard 29.0 t/e54	Alloy 5052)-bcf1-9=942acc3bb		<u>3-b313m4)2e1</u>
0	0.032-0.050	standard 29.0 t/e54 25.0	Alloy 5052 31.0)-bcfl-9-9942acc3bb 9.5		<u>3-b313m-4)2e1</u> 18
0	0.032–0.050 0.051–0.113	25.0 25.0 25.0	Alloy 5052 31.0 31.0)-bcf1-9⊕942acc3bb 9.5 9.5	6/astm-b31	3-b313m4)2e1 18 19
0	0.032-0.050	standard 29.0 t/e54 25.0	Alloy 5052 31.0)-bcfl-9-9942acc3bb 9.5	6/astm-b31 	<u>3-b313m-4)2e1</u> 18
	0.032–0.050 0.051–0.113 0.114–0.125	25.0 25.0 25.0 25.0	Alloy 5052 31.0 31.0 31.0 31.0	9.5 9.5 9.5 9.5 9.5	6/astm-b31	3-b313m 42e1 18 19 20
0 H32	0.032–0.050 0.051–0.113	25.0 25.0 25.0 25.0 31.0	Alloy 5052 31.0 31.0 31.0 38.0)-bcfl-9::942acc3bb 9.5 9.5 9.5 23.0	<u>6/astm-b31</u>	<u>3-b313m42e1</u> 18 19 20 5
	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050	25.0 25.0 25.0 25.0	Alloy 5052 31.0 31.0 31.0 31.0	9.5 9.5 9.5 9.5 9.5	6/astm-b31	3-b313m 42e1 18 19 20
H32	0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125	25.0 25.0 25.0 25.0 31.0 31.0 31.0 31.0	Alloy 5052 31.0 31.0 31.0 31.0 38.0 38.0 38.0 38.0 38.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 23.0	<u>6/astm-b31</u>	3-b313m42e1 18 19 20 5 7 9
	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050	25.0 25.0 25.0 25.0 31.0 31.0 31.0 31.0 34.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 38.0 41.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 23.0 23.0 26.0	<u>6/astm-b31</u>	3-b313m422e1 18 19 20 5 7 9 4
H32	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.032–0.050 0.051–0.113	25.0 25.0 25.0 31.0 31.0 31.0 31.0 34.0 34.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 41.0 41.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 23.0 23.0 26.0 26.0	6/astm-b31	<u>3-b313m42e1</u> 18 19 20 5 7 9 4 6
H32	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050	25.0 25.0 25.0 25.0 31.0 31.0 31.0 31.0 34.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 38.0 41.0)-bcfl-9942acc3bb 9.5 9.5 9.5 23.0 23.0 23.0 23.0 26.0	6/astm-b31	3-b313m422e1 18 19 20 5 7 9 4
H32	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.032–0.050 0.051–0.113	25.0 25.0 25.0 31.0 31.0 31.0 31.0 34.0 34.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 41.0 41.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 23.0 23.0 26.0 26.0	6/astm-b31	<u>3-b313m42e1</u> 18 19 20 5 7 9 4 6
H32 H34 H36	0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.125	25.0 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 37.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 41.0 41.0 41.0 41.0 41.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 23.0 26.0 26.0 26.0 26.0 29.0	<u>6/astm-b31</u>	3-b313m 4)2e1 18 19 20 5 7 9 4 6 7 4
H32 H34	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125	25.0 25.0 25.0 31.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 41.0 41.0 41.0 41.0 41.0 41.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 23.0 26.0 26.0 26.0 26.0	<u>6/astm-b31</u>	3-b313m 42e1 18 19 20 5 7 9 4 6 7
H32 H34 H36 H38	0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.125 0.032-0.125	25.0 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 41.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 23.0 26.0 26.0 26.0 26.0 29.0 32.0	<u>6/astm-b31</u>	3-b313m 42e1
H32 H34 H36	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.125 0.032–0.125 0.032–0.125	standard 29.0 1/e 54 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 35.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 41.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 41.0)-bcfl-9942acc3bbb 9.5 9.5 9.5 23.0 23.0 23.0 23.0 26.0 26.0 26.0 26.0 29.0 32.0	6/astm-b31	3-b313m 42e1 18 19 20 5 7 9 4 6 7 4 4 4 4 15
H32 H34 H36 H38	0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.125 0.032-0.125	25.0 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 41.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 23.0 26.0 26.0 26.0 26.0 29.0 32.0	6/astm-b31	3-b313m 4)2e1 18 19 20 5 7 9 4 6 7 4 4 4 4 15 18
H32 H34 H36 H38	0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.125 0.032-0.125 0.032-0.050 0.051-0.125 0.032-0.050	standard 29.0 1/e 54 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 34.0 35.0 35.0 40.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 41.0 41.0 41.0 41.0 41.0 41.0 44.0 Alloy 5086 44.0 44.0 44.0 44.0 44.0)-bcfl-9942acc3bbb 9.5 9.5 9.5 23.0 23.0 23.0 26.0 26.0 26.0 26.0 29.0 32.0 14.0 14.0 14.0 28.0	6/astm-b31	3-b313m4)2e1 18 19 20 5 7 9 4 6 7 4 4 4 4 15 18 6
H32 H34 H36 H38	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.125 0.032–0.125 0.032–0.125	25.0 25.0 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 34.0 37.0 39.0 35.0 35.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 41.0 41.0 41.0 41.0 41.0 41.0 44.0 Alloy 5086 44.0 44.0	9.5 9.5 9.5 9.5 23.0 23.0 23.0 26.0 26.0 26.0 26.0 29.0 32.0 14.0 14.0	<u>6/astm-b31</u>	3-b313m4)2e1 18 19 20 5 7 9 4 6 7 4 4 4 4 15 18
H32 H34 H36 H38 O H32	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.125 0.032–0.125 0.032–0.125 0.032–0.050 0.051–0.125	25.0 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 34.0 34.0 35.0 35.0 35.0 40.0 40.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 41.0 41.0 41.0 41.0 41.0 41.0 44.0 44.0 44.0 44.0 44.0 47.0 47.0)-bcfl-9942acc3bbb 9.5 9.5 9.5 23.0 23.0 23.0 26.0 26.0 26.0 26.0 29.0 32.0 14.0 14.0 14.0 28.0 28.0 28.0	<u>6/astm-b31</u>	3-b313m 4)2e1 18 19 20 5 7 9 4 6 7 4 4 4 15 18 6 8
H32 H34 H36 H38	0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.050 0.051-0.113 0.114-0.125 0.032-0.125 0.032-0.125 0.032-0.050 0.051-0.125 0.032-0.050	standard 29.0 1/e 54 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 34.0 35.0 35.0 40.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 41.0 41.0 41.0 41.0 41.0 41.0 44.0 Alloy 5086 44.0 44.0 44.0 44.0 44.0)-bcfl-9942acc3bbb 9.5 9.5 9.5 23.0 23.0 23.0 26.0 26.0 26.0 26.0 29.0 32.0 14.0 14.0 14.0 28.0	6/astm-b31	3-b313m 42e1
H32 H34 H36 H38 O H32	0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.050 0.051–0.113 0.114–0.125 0.032–0.125 0.032–0.125 0.032–0.050 0.051–0.125 0.032–0.050 0.051–0.125	standard 29.0 1/e 54 25.0 25.0 31.0 31.0 31.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 35.0 35.0 35.0 40.0 40.0 40.0 44.0	Alloy 5052 31.0 31.0 31.0 38.0 38.0 38.0 38.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 5086 44.0 47.0 51.0)-bcfl-9942acc3bbb 9.5 9.5 9.5 23.0 23.0 23.0 26.0 26.0 26.0 29.0 32.0 14.0 14.0 14.0 14.0 28.0 28.0 28.0 34.0	6/astm-b31	3-b313m 4)2e1 18 19 20 5 7 9 4 6 7 4 4 4 4 5 15 18 6 8 5

∰ B313/B313M – 02^{ε1}

				200			
Temper	Specified Thickness, —	Tensile Strength, ksi		Yield Strength (Yield Strength (0.2 % offset), ksi		
Temper	in.	min	max	min	max	— or 4× Diameter, min,%	
			Alloy 5154				
0	0.032-0.050	30.0	41.0	11.0		14	
	0.051-0.113	30.0	41.0	11.0		16	
	0.114-0.125	30.0	41.0	11.0		18	
H32	0.032-0.050	36.0	43.0	26.0		5	
	0.051-0.125	36.0	43.0	26.0		8	
H34	0.032-0.050	39.0	46.0	29.0		4	
	0.051-0.125	39.0	46.0	29.0		6	
			Alloy 5154				
H36	0.032-0.050	42.0	49.0	32.0		3	
	0.051-0.113	42.0	49.0	32.0		4	
	0.114-0.125	42.0	49.0	32.0		5	
H38	0.032-0.050	45.0		35.0		3	
	0.051-0.113	45.0		35.0		4	
	0.114-0.125	45.0		35.0		5	
			Alloy 6061				
0	0.032-0.125		22.0		12.0	16	
T4	0.032-0.125	30.0		16.0		16	
T6	0.032-0.125	42.0		35.0		10	

TABLE 2 Continued

^A Determination of tensile and yield strengths across the weld are not usually made on a routine basis. However, such determination, if made would show strength about 85 % of those of the parent material except for T6 temper of 6061 which would show 30.0 ksi ultimate tensile strength.

^B To determine conformance with the values in this table each value for tensile and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.

^c The basis for establishment of mechanical property limits is shown in Annex A1.

TABLE 3 Tensile Property Limits [SI Units]^{A,B,C}

Temper	Specified T	hicknes <mark>s, mm</mark>	Tensile S	Yield S (0.2 % off	Elongation min, %		
	over	through	min	max	min	max	in 50 mm
			Alumi	num 1100			
0	0.80	1.20 🛆	<u>STM B₇₅13/B</u>	<u>313M-105e1</u>	25		22
	eh ai/1.20alog/	standa ^{3.20} /sist	e540ed751_36	27_411 105 f1_0	e942253bb	5/astm -b 313-1	o313m- <mark>30</mark> 2e1
H12	0.80	1.20	95	130			5
	1.20	3.20	95	130	75		8
H14	0.80	1.20	110	145	95		3
	1.20	3.20	110	145	95		5
H16	0.80	1.20	130	165	115		3
	1.20	3.20	130	165	115		4
H18	0.80	1.20	150				2
	1.20	3.20	150				4
			Allo	oy 3003			
0	0.80	1.20	95	130	35		22
	1.20	3.20	95	130	35		25
H12	0.80	1.20	120	160	85		4
	1.20	3.20	120	160	85		6
H14	0.80	1.20	140	180	115		3
	1.20	3.20	140	180	115		5
H16	0.80	1.20	165	205	145		3
	1.20	3.20	165	205	145		4
H18	0.80	1.20	185		165		2
	1.20	3.20	185		165		4
			Allo	by 3004			
0	0.80	1.20	150	200	60		15
	1.20	3.20	150	200	60		18
H32	0.80	1.20	190	240	145		3
	1.20	3.20	190	240	145		5
H34	0.80	1.20	220	265	170		3
	1.20	3.20	220	265	170		4
H36	0.80	1.20	240	285	190		3
	1.20	3.20	240	285	190		4
H38	0.80	1.20	260		215		2

∰ B313/B313M – 02^{€1}

TABLE 3 Continued

			IADLE	S Continueu			
Temper	Specified	d Thickness, mm	Tensile	Strength, MPa		Yield Strength (0.2 % offset,) MPa	
	over	through	min	max	min	max	in 50 mm
	1.20	3.20	260		215		4
			Alloy	Alclad 3004			
0	0.80	1.20	145	195	55		15
1100	1.20	3.20	145	195	55		18
H32	0.80	1.20	185	235	140		3
110.4	1.20	3.20	185	235	140		5
H34	0.80 1.20	1.20 3.20	215 215	260 260	165 165		3 4
H36	0.80	1.20	235	280	185		3
1150	1.20	3.20	235	280	185		4
H38	0.80	1.20	255				2
1100	1.20	3.20	255				4
			AI	loy 3005			
0	0.80	1.20	115	165	45		17
	1.20	3.20	115	165	45		20
H12	0.80	1.20	140	190	115		2
	1.20	3.20	140	190	115		3
H14	0.80	1.20	165	215	145		2
	1.20	3.20	165	215	145		3
H16	0.80	1.20	190	240	170		2
	1.20	3.20	190	240	170		2
H18	0.80 1.20	1.20 3.20	220 220		200 200		2 2
	1.20	0.20		 loy 5050	200		£
0	0.80	1.20	125	165	40		19
0	1.20	3.20	e 125	165	40		20
H32	0.80	1.20	150	195	110		5
1102	1.20	3.20	150	195	110		6
H34	0.80	1.20	170	215	140		4
	1.20	3.20	170	215	140		5
H36	0.80	1.20	185	230	150		3
	1.20	3.20	185	230	150		4
H38	0.80	1.20	200				3
	1.20	3.20	200				4
			AI	loy 5052	-1		
0	0.80	1.20	170	215	65		17
://standards.ite	eh.ai/1.20alo	g/standa3.20/sis	/e540e170-31	87-41b215	cfl-9e942a65	3bb6/astm- b 313	-b313m- 19 2e1
H32	0.80	1.20	215	265	160		5
H34	1.20 0.80	3.20 1.20	215 235	265 285	160 180		7 4
1134	1.20	3.20	235	285	180		6
H36	0.80	3.20	255	305	200		4
H38	0.80	3.20	270		220		4
			AI	loy 5086			
0	0.80	1.20	240	305	95		16
	1.20	3.20	240	305	95		18
H32	0.80	1.20	275	325	195		6
	1.20	3.20	275	325	195		8
H34	0.80	1.20	300	350	235		5
	1.20	3.20	300	350	235		6
H36	0.80	1.20	325	375	260		4
	1.20	3.20	325	375	260		6
				loy 5154			
0	0.80	1.20	205	285	75		13
1.00	1.20	3.20	205	285	75		16
H32	0.80	1.20	250	300	180		6
110.4	1.20	3.20	250	300	180		8
H34	0.80	1.20	270	320	200		5
LIDE	1.20	3.20	270	320	200		6
H36	0.80	1.20	290	340	220		4
	1.20 0.80	3.20 1.20	290 310	340	220 240		4 3
L100		1.20	.510				3
H38	1.20	3.20	310		240		4