

Designation: D994 - 98 (Reapproved 2003)

Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type)¹

This standard is issued under the fixed designation D994; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification covers bituminous preformed expansion joint filler for use in concrete construction.

Note 1—Attention is called to ASTM Specifications D1751 and D1752.

1.2 The values stated in SI units shall be regarded as the standard.

2. Referenced Documents

- 2.1 ASTM Standards:²
- C670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials
- D545 Test Methods for Preformed Expansion Joint Fillers for Concrete Construction (Nonextruding and Resilient Types)
- D1751 Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)
- D1752 Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction

3. Manufacture

3.1 This product shall consist of a bituminous (asphalt or tar) mastic composition, formed and encased between two layers of bituminous impregnated felt or two layers of glassfiber felt. The mastic shall comprise mineral fillers and reinforcing fibers and may contain thin strips of reinforcing sheet material.

4. General Requirements General Requirements

4.1 Preformed strips of expansion joint filler shall be of such character as not to be deformed or broken by ordinary handling when exposed to atmospheric conditions and shall not become brittle in cold weather. Pieces of the joint filler that have been damaged shall be rejected.

5. Properties

- 5.1 Distortion at $52^{\circ}C$ ($125^{\circ}F$)—The joint filler shall not show a deflection of more than 25 mm (1 in.) when tested in accordance with 8.2.1.
- 5.2 *Brittleness*—The joint filler shall not crack or shatter when tested in accordance with 8.2.2.
- Note 2—Expansion joint filler having a nominal thickness of 6.4 mm (1/4 in.) or less shall not be subject to a requirement for brittleness.
- 5.3 Water Absorption—The water absorption of the joint filler, when tested in accordance with 8.2.3, shall not exceed the following values:

Nominal Thickness of	Absorption, max,
Joint, mm (in.)	weight %
355-9a 25.4 (1),bb32d79e	69/astm-d992.5982003
19.1 (3/4)	3
12.7 (1/2)	4
9.5 (%)	5

Note 3—Expansion joint filler having a nominal thickness of less than 9.5 mm (3/8 in.) shall not be subject to a requirement for water absorption.

5.4 *Compression*—The load required to compress the test specimen to 50 % of its thickness before test shall not be less than nor more than the following values when the joint filler is tested in accordance with 8.2.4.

Nominal Thickness of	Load Requirements,
Joint mm (in.)	min-max. kPa (psi)
25.4 (1 in.)	690-5, 200 (100-754)
19.1 (¾ in.)	690, 5, 800 (100-841)
12.7 (½ in.)	690-6, 400 (100-928)

Note 4—Expansion joint filler having a nominal thickness of less than 12.7 mm ($\frac{1}{2}$ in.) shall not be subject to a requirement for compression.

¹ This specification is under the jurisdiction of ASTM Committee D04 on Road and Paving Materials and is the direct responsibility of Subcommittee D04.33 on Formed-In-Place Sealants for Joints and Cracks in Pavements.

Current edition approved Dec. 1, 2003. Published December 2003. Originally approved in 1948. Last previous edition approved in 1998 as D994 – 98. DOI: 10.1520/D0994-98R03.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

6. Dimensions and Permissible Variations

6.1 The preformed strips shall conform to the dimensions specified or shown on the plans. Strips of the joint filler that do not conform to the specified dimensions, within the permissible variations of +1.6 mm ($\frac{1}{16}$ in.) in thickness, ± 3.2 mm ($\frac{1}{8}$ in.) in depth, and ± 6.4 mm ($\frac{1}{4}$ in.) in length, shall be rejected.

7. Sampling

- 7.1 Size of Sample—Each sample shall consist of sufficient material to provide at least 3 test specimens measuring 51 by 152 mm (2 by 6 in.) and at least 1 test specimen measuring 102 by 102 mm (4 by 4 in.).
- 7.2 *Number of Samples*—One representative sample shall be selected from each shipment of 93 m² (1000 ft²), or fraction thereof, of each thickness ordered.
- 7.3 Samples shall be packed for transportation in such a manner that there will be no danger of distortion or breakage.

8. Test Methods

- 8.1 Significance and Use:
- 8.1.1 The distortion and brittleness tests are used to determine the handling characteristic of the material. The water absorption and compression tests are used to determine the suitability of the material as an expansion joint filler.
 - 8.2 Procedures:
- 8.2.1 Distortion at $52^{\circ}C$ ($125^{\circ}F$)—Cut a test specimen 51 by 152 mm (2 by 6 in.), substantially flat and straight, with the 152-mm dimension parallel to the machine direction of the strip. Clamp the specimen between two blocks so that the expansion joint forms a cantilever of 89-mm ($3\frac{1}{2}$ -in.) length. Place the clamp and joint assembly in a forced-draft oven maintained at $52 \pm 1.1^{\circ}C$ ($125 \pm 2^{\circ}F$), with the specimen in a horizontal position, for 2 h. Measure the deflection of the specimen from the horizontal.
- 8.2.2 *Brittleness*—Cut a test specimen 51 by 152 mm (2 by 6 in.) with the 152-mm dimension parallel to the machine direction of the strip. Maintain the specimen at a temperature of 4 to 6°C (39 to 43°F) in water for at least 2 h prior to testing.

Clamp the specimen between two boards so that the expansion joint forms a cantilever of 89-mm (3½-in.) length and hold in a horizontal position by a suitable rigid support. Suspend a spherical cast iron ball, weighing 0.43 kg (0.95 lb) and having a diameter of 48 mm (1½ in.), by a cord tied to an eyelet fastened to the ball. For specimens having a thickness of 14.3 mm (½ in.) or less, suspend the ball 304 mm (1 ft) above the center of the projecting portion of the specimen. For specimens over 14.3 mm in thickness, suspend the ball 610 mm (2 ft) above the specimen. Release the ball by burning the cord above the eyelet. Other suitable suspension and release devices may be used.

- 8.2.3 Water Absorption—Cut a test specimen 51 by 152 mm (2 by 6 in.) from the joint filler material, in such a manner that all edges are freshly cut, and weigh. Immerse the specimen horizontally under 25.4 mm (1 in.) of distilled or deionized water at 23 \pm 2°C (73.4 \pm 3.6°F) for 24 h, remove, and wipe off the surface water with a slightly dampened cloth. Weigh the specimen quickly and calculate the gain in weight and express as weight percent of water absorbed.
- 8.2.4 *Compression*—Test the joint filler in accordance with the compression test outlined in Methods D545, except make only a single application of the load required to compress the specimen to 50 % of its thickness before test, and do not measure the recovery.
 - 8.3 Precision and Bias:
- 8.3.1 Precision statement for single operator was calculated per Practice C670. Maximum acceptable range of individual measurements. No precision statement is necessary for brittleness since this property is qualified as an attribute. Precision statements are listed in Table 1.
- 8.3.2 Since there is no accepted reference material suitable for determining the bias in this test method, no statement on bias is made.

9. Keywords - 0bbb32d79e69/astm-d994-982

9.1 asphalt; bituminous; construction; expansion; joint; paving; preformed