

Standard Test Method for Density and Relative Density (Specific Gravity) of Liquids by Bingham Pycnometer¹

This standard is issued under the fixed designation D 1217; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This test method covers the measurement of the density of pure hydrocarbons or petroleum distillates boiling between 90 and 110°C that can be handled in a normal fashion as a liquid at the specified test temperatures of 20 and 25°C.

1.2 This test method provides a calculation procedure for conversion of density to relative density (specific gravity).

1.3 The values stated in SI units are to be regarded as the standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Note 1, Note 2, and Note 3.

2. Referenced Documents

2.1 ASTM Standards:

E 1 Specification for ASTM Thermometers²

3. Terminology

3.1 Definitions:

3.1.1 *density*—the weight in vacuo, (that is, the mass) of a unit volume of the material at any given temperature.

3.1.2 relative density (specific gravity)—the ratio of the mass (weight in vacuo) of a given volume of material at a temperature, t_1 , to the mass of an equal volume of water at a reference temperature, t_2 ; or it is the ratio of the density of the material at t_1 to the density of water at t_2 . When the reference temperature is 4.00°C, the temperature at which the relative density of water is unity, relative density (specific gravity) and density are numerically equal.

4. Summary of Test Method

4.1 The liquid sample is introduced into a pycnometer, equilibrated to the desired temperature, and weighed. The relative density (specific gravity) or density is then calculated from this weight and the previously determined weight of water that is required to fill the pycnometer at the same temperature, both weights being corrected for the buoyancy of air.

5. Significance and Use

5.1 Density is a fundamental physical property which can be used in conjunction with other properties to characterize pure hydrocarbons and their mixtures.

5.2 This test method was originally developed for the determination of the density of the ASTM Knock Test Reference Fuels *n*-heptane and *iso*octane, with an accuracy of 0.00003 g/mL. Although it is no longer employed extensively for this purpose, this test method is useful whenever accurate densities of pure hydrocarbons or petroleum fractions with boiling points between 90 and 110°C are required.

6. Apparatus

6.1 *Pycnometer*, Bingham-type,³ conforming to the dimensions given in Fig. 1, constructed of borosilicate glass and having a total weight not exceeding 30 g.

6.2 Constant-Temperature Bath, provided with suitable pycnometer holders or clips and means for maintaining temperatures constant to ± 0.01 °C in the desired range.

6.3 Bath Thermometer, graduated in 0.1°C subdivisions and standardized for the ice point and the range of use to the nearest 0.01°C. ASTM Saybolt Viscosity Thermometer 17C as prescribed in Specification E 1, designed for tests at 21.1°C and 25°C, is recommended. A standardized platinum resistance thermometer may also be used, and offers the best means for observing minute temperature changes in the bath. Whichever means are available, it must be realized that for most hydrocarbons the density coefficient is about 0.0008 units/°C, and therefore an error of ±0.013°C would cause an error of ±0.00001 in density.

6.4 *Hypodermic Syringe*, 30-mL capacity, of chemically resistant glass, equipped with a 152-mm (6-in.) needle made of stainless steel tubing as shown in Fig. 2.

6.5 *Draw-Off Needle*, made of stainless steel tubing as shown in Fig. 2.

¹ This test method is under the jurisdiction of ASTM Committee D-2 on Petroleum Products and Lubricantsand is the direct responsibility of Subcommittee D02.04on Hydrocarbon Analysis.

Current edition approved Feb. 15, 1993. Published May 1993. Originally published as D 1217 - 52 T. Last previous edition D 1217 - 91.

² Annual Book of ASTM Standards, Vol 14.03.

³ Pycnometer available from Reliance Glass Co., 220 Gateway Rd., Bensenville, IL 60106-0825, has been found satisfactory.

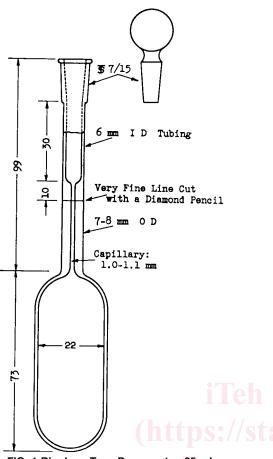


FIG. 1 Bingham-Type Pycnometer, 25 mL

6.6 Solvent-Cleaning Assembly, as shown in Fig. 3.

6.7 Chromic Acid Cleaning Apparatus, similar to that shown in Fig. 4.

6.8 *Balance*, capable of reproducing weighings within 0.1 mg. Mechanical balances should have sensitivity which causes the pointer to be deflected 2 or 3 scale divisions per 1 mg when carrying a load of 30 g or less on each pan. The balance should be located in a room shielded from drafts and fumes and in which the temperature changes between related weighings (empty and filled pycnometer) do not cause a significant change in the ratio of the balance arms. Otherwise weighings shall be made by the method of substitution, in which the calibrated weights and pycnometer are alternately weighed on the same balance pan. The same balance shall be used for all related weighings.

6.9 Weights, whose relative values are known to the nearest 0.05 mg or better. The same set of weights shall be used for the calibration of the pycnometer and the determination of densities.

7. Reagents and Materials

7.1 Acetone-(Warning-See Note 1).

NOTE 1-Warning: Extremely flammable. Use adequate ventilation.

7.2 Isopentane – (Warning – See Note 2).

NOTE 2-Warning: Extremely flammable. Avoid buildup of vapors and remove all sources of ignition, especially non-explosion proof electrical apparatus.

7.3 Chromic Acid (Potassium Dichromate/Conc. Sulfuric Acid)—(Warning—See Note 3).

NOTE 3-Warning: Causes severe burns. A recognized carcinogen. Do not get in eyes, or on skin or clothing.

8. Preparation of Apparatus

8.1 Thoroughly clean the pycnometer with hot chromic acid cleaning solution by means of the assembly shown in Fig. 4 (Warning-See Note 3). Chromic acid solution is the most effective cleaning agent. However, surfactant cleaning fluids have also been used successfully. Mount the apparatus firmly and connect the trap to the vacuum. Warm the necessary amount of cleaning acid in the beaker, place the pycnometer on the ground joint, and evacuate by opening the stopcock to vacuum. Fill the pycnometer with acid by turning the stopcock, repeat several times or remove the filled pycnometer, and allow it to stand for several hours at 50 to 60°C. Remove the acid from the pycnometer by evacuation, empty the acid from the trap, and flush the pycnometer with water. Cleaning should be made in this manner whenever the pycnometer is to be calibrated or whenever liquid fails to drain cleanly from the walls of the pycnometer or its capillary. Ordinarily, the pycnometer may be cleaned between determinations by washing with a suitable solvent, rinsing with pure, dry acetone, followed by isopentane, and vacuum drying.

8.2 Transfer the pycnometer to the cleaner assembly shown in Fig. 3, with vacuum line and trap attached to the side tube as indicated. Place the pycnometer on the cleaner with the upper hypodermic needle extending upward into the pycnometer, and press the edge of the ground joint on the rubber stopper until the vacuum holds it in place. Draw out all the liquid or sample. Immerse the lower end of the hypodermic tube in a suitable solvent and draw 20 to 25 mL through the pycnometer. Leaving the pycnometer in place, draw air through it until it is dry. Clean the hypodermic syringe with the same apparatus.

9. Calibration of Pycnometer

9.1 Proceeding as directed in Section 10, determine the weight of freshly-boiled and cooled distilled water (distilled from alkaline permanganate through a tin condenser) held by the pycnometer when equilibrated to volume at the bath temperature to be used in the determination. Repeat until at least three values agree to ± 0.2 mg.

10. Procedure

10.1 Using another 25-mL pycnometer as a tare (Note 4), weigh the clean, dry pycnometer to 0.1 mg and record the weight.

NOTE 4—It is convenient to use the lightest of a set of pycnometers as a tare. For best results the treatment and environment of both pycnometer and tare should be identical for some time prior to weighing.

10.2 Cool the sample to 5 to 10°C below the test temperature, and fill the clean 30-mL hypodermic syringe. Transfer the sample to the pycnometer through the filling needle; avoid trapping air bubbles (Note 2) in the bulb or capillary of the pycnometer. If any are present, draw them into the syringe where possible. Also remove with the syringe or draw-off