INTERNATIONAL STANDARD

First edition 2001-08-15

Gas cylinders — Gas cylinder valve connections for use in the micro-electronics industry —

Part 1: Outlet connections

iTeh STANDARD PREVIEW Bouteilles à gaz — Raccords pour robinets de bouteilles à gaz pour l'industrie de la microélectronique —

Partie 1: Raccords de sortie <u>ISO 10692-1:2001</u> https://standards.iteh.ai/catalog/standards/sist/58479722-538a-4887-ae06d6c1a44a27d9/iso-10692-1-2001

Reference number ISO 10692-1:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10692-1:2001</u> https://standards.iteh.ai/catalog/standards/sist/58479722-538a-4887-ae06d6c1a44a27d9/iso-10692-1-2001

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch

Printed in Switzerland

Contents

Forewo	ord	
1	Scope	1
2	Normative references	1
3	General requirements	1
4	General design	2
5	Dimensions	2
6	630 and 640 series connections	2
7	710 and 720 series connections	
8	Components common to both series	10
9	Thread profile	12
10	Allocation of outlet to single gases listed in annex A	
11	Allocation of other gases and of gas mixtures to outlets	13
Annex	A (normative) Mandatory outlet allocations for selected single gases	14
	B (informative) Examples showing how to use the information given in clauses 10 and 11	
Bibliog	jraphy	17
	ISO 10692-1:2001 https://standards.iteh.ai/catalog/standards/sist/58479722-538a-4887-ae06-	

d6c1a44a27d9/iso-10692-1-2001

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 10692 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 10692-1 was prepared by Technical Committee ISO/TC 58, *Gas cylinders*, Subcommittee SC 2, *Cylinder fittings*.

ISO 10692 consists of the following parts, under the general title Gas cylinders – Gas cylinder valve connections for use in the micro-electronics industry: (standards.iteh.ai)

- Part 1: Outlet connections

 Part 2: Specification and type testing for valve to cylinder connections https://standards.itch.av/catalog/standards/sist/58479722-538a-4887-ae06-

Annex A forms a normative part of this part of ISO 10692. Annex B is for information only.

Gas cylinders — Gas cylinder valve connections for use in the micro-electronics industry —

Part 1: Outlet connections

1 Scope

This part of ISO 10692 applies to the outlet connections of gas cylinder valves for gases and gas mixtures and concerns special requirements where the highest levels of cleanliness and freedom from particles are demanded for the manufacture of microelectronic components or similar applications.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 10692. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 10692 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative <u>document referr</u>ed to applies. Members of ISO and IEC maintain registers of currently valid International Standards/sist/58479722-538a-4887-ac06-

ISO 68-2, ISO general-purpose screw threads — Basic profile — Part 2: Inch screw threads.

ISO 6506-1, Metallic materials — Brinell hardness test — Part 1: Test method.

ISO 10156, Gases and gas mixtures — Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets.

ISO 10297, Gas cylinders — Refillable gas cylinder valves — Specification and type testing.

ISO 10298, Determination of toxicity of a gas or gas mixture.

ISO 11114-1, Transportable gas cylinders — Compatibility of cylinder and valve materials with gas contents — Part 1: Metallic materials.

3 General requirements

3.1 Materials

The following materials and specifications are recommended:

- For valve and nipple: AISI 316L, microfinished, hardness at least 130 HBW in accordance with ISO 6506-1;
- For the union nut: AISI 304, threading silver plated.

Other materials and values may be chosen if they give at least equivalent performance in terms of yield stress and resistance to corrosion (see ISO 11114-1).

Operation 3.2

For these connections the outboard leak rate shall not exceed a value of 1×10^{-7} mbar l·s⁻¹ at 137 bar helium when the connection is tightened to 50 N·m.

When this outboard leak rate is obtained, an inboard helium leak rate shall be no greater than 1×10^{-9} mbar l·s⁻¹.

The gasket shall be an unused recessed flat, uncoated gasket of Ni 200, fully annealed with the requirements of 8.1. Its hardness shall be HBW 2,5/62,5: 80 to 100 HBW (in accordance with ISO 6506-1) with a surface finish < 0,8 µm turned in the sealing area. Gaskets of other materials, e.g. polymers, may be used if they do not compromise the leak integrity of the connection and are compatible with the duty. These gaskets shall be used at a torque appropriate for the material.

NOTE Conditions of use may cause significant differences in both the inboard and outboard leak rates, e.g. nickel gaskets should be used only once.

Marking 3.3

The valves shall be marked with the requirements listed in ISO 10297, as far as appropriate. In addition to all the required valve marking the letters "nnn", where nnn is the outlet number, shall be marked.

General design 4

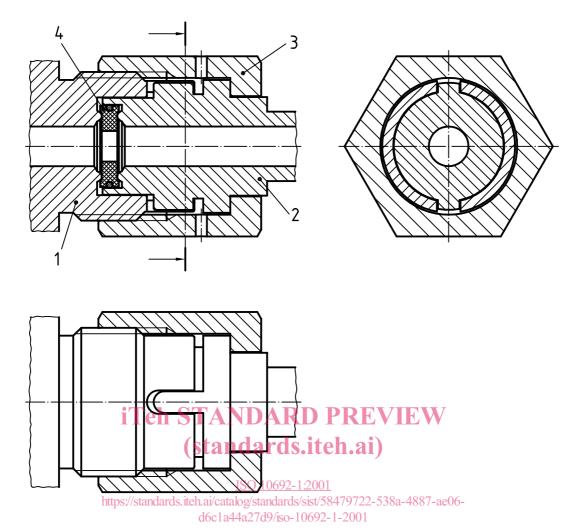
Figure 1 shows the connection in the assembled state (view from the top). The nipple tip has two notches to facilitate the removal of the gasket.

A pair of keys on the nipple and of the corresponding key ways on the valve prevent rotation of the parts during assembly. The keys shall be opposite to each other and vertically oriented. The antirotational device shall always be in place. The nut shall not engage on the outlet thread until the antirotational pins fitted to the plug are engaged in the slots on the valve outlet. An alternative way to design the antirotational device of the nipple is described in d6c1a4 8.3.

The union nut shall have two venting holes opposite to each other.

Dimensions 5

Dimensions for the outlet connections are given in Figures 2 to 9. Only dimensions explicitly given there are mandatory. Others shall be chosen as appropriate. All dimensions are in millimetres. The thread definition is given in clause 9.

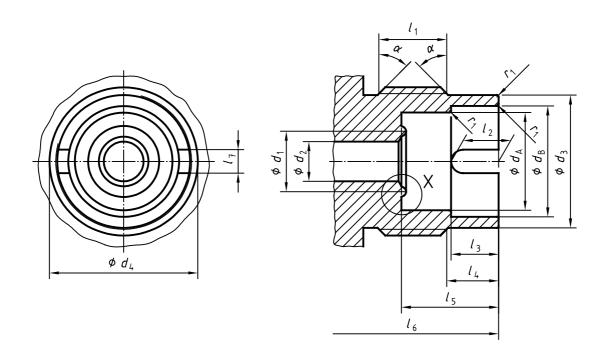

The diameters d_A , d_B , d_M and d_N are not dimensioned in the figures because they assume different values for each connection. They are chosen in such a way that combinations other than the intended ones are impossible. The diameters d_A and d_B on the valve outlet as well as d_M and d_N on the nipple shall be concentric within 0,05 mm full indicator movement because these are critical dimensions for safety.

6 630 and 640 series connections

Details of the valve outlet are given in Figure 2. Figure 3 gives details of the nipple.

The values of the diameters d_A , d_B , d_M and d_N for the 630 and 640 series connections are given in Table 1.

Figure 4 shows the union nut.


Key

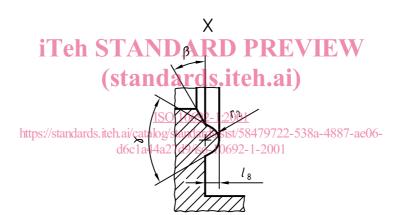
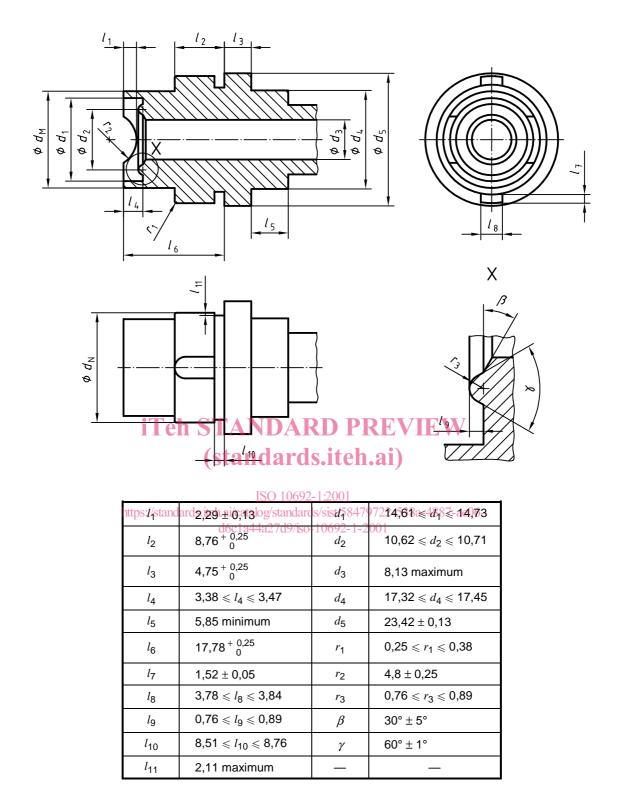
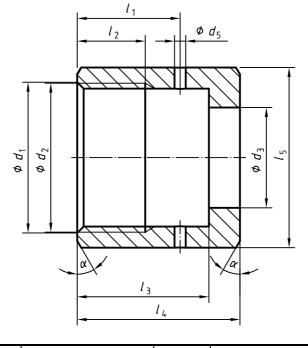

- 1 Valve outlet
- 2 Nipple
- 3 Union nut
- 4 Gasket and circlips

Figure 1 — Assembly drawing of the connections (view from the top)

No.	dA		dB		d_{M}		d _N	
NO.	min.	max.	min.	max.	min.	max.	min.	max.
632	16,49	16,58	20,22	20,32	16,31	16,40	20,04	20,14
634	16,84	16,94	19,86	19,96	16,66	16,76	19,69	19,79
636	17,2	17,3	19,51	19,61	17,02	17,12	19,33	19,43
638	17,55	17,65	19,15	19,25	17,37	17,48	18,97	19,08
640	17,91	18,00	18,80	18,89	17,73	17,83	18,62	18,71
642	18,26	18,36	18,26	18,36	18,08	18,18	18,08	18,18


Table 1 — Index diameters of the 630 and 640 series connections



l ₁	11,1 min.	<i>d</i> ₁	$10,62 \leqslant d_1 \leqslant 10,71$			
l ₂	8,38 ^{+ 0,25} - 0,13	d_2	8,13 max.			
l ₃	8,38 ⁺⁰ _{-0,25}	d_3	$\textbf{23,37} \leqslant d_{\textbf{3}} \leqslant \textbf{23,49}$			
l_4	9,14 ^{+0,25} -0	d_4	1,030 external ^a			
l_5	17,15 _ 0 _ 0,25	<i>r</i> 1	$0,25\leqslant r_{1}\leqslant 0,38$			
l ₆	42,54 max.	r ₂	0,76 ≤ <i>r</i> ₂ ≤ 0,89			
l7	$4,09\leqslant l_7\leqslant 4,19$	α	$45^{\circ} \pm 5^{\circ}$			
l ₈	0,76 ≤ <i>l</i> ₈ ≤ 0,89	β	$30^\circ \pm 5^\circ$			
		γ	60° ± 1°			
^a Nominal diameter in inches.						

Figure 2 — Valve outlet of the 630 and 640 series connections (view from the top)

Figure 3 — Nipple	of the 630 and 640	series connections
-------------------	--------------------	--------------------

<i>l</i> ₁	$18,14 \pm 0,13$	<i>d</i> ₁	$\textbf{26,59} \pm \textbf{0,25}$			
l ₂	11,4 min.	<i>d</i> ₂	1,035 internal ^a			
l ₃	ep3,24 0 ANDA		17,70 ± 0,13			
l_4	28,7 ± 0,25 ndar	as _d ste	n _{1,98})			
l_5	31,8 hexagonal	α	$30^\circ \pm 5^\circ$			
^a httpNominal diameter in inches/standards/sist/58479722-538a-4887-ae06-						
d6c1a44a27d9/iso-10692-1-2001						

Figure 4 — Union nut of the 630 and 640 series connections

7 710 and 720 series connections

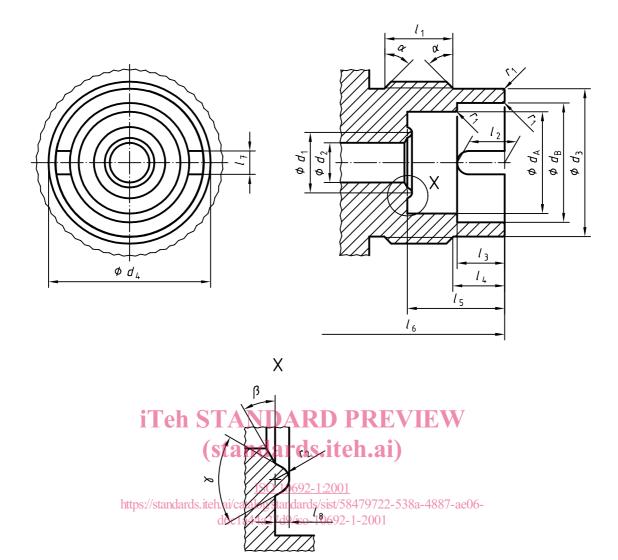

The connections of the 710 and 720 series are similar to those of the 630 and the 640 series, except for the thread and the corresponding dimensions and for the diameters d_A , d_B , d_M and d_N .

Figure 5 gives details of the valve outlet. Figure 6 shows details of the nipple. The values of the diameters d_A , d_B , d_M and d_N for the 710 and 720 series connections are given in Table 2.

Figure 7 shows the union nut.

No.	d _A		d _B		d_{M}		d _N	
NO.	min.	max.	min.	max.	min.	max.	min.	max.
712	16,48	16,58	22,43	22,52	16,30	16,41	22,25	22,35
714	16,84	16,94	22,08	22,17	16,67	16,76	21,90	21,99
716	17,20	17,29	21,72	21,81	17,02	17,11	21,54	21,64
718	17,56	17,65	21,37	21,46	17,38	17,47	21,19	21,28
720	17,91	18,00	21,01	21,10	17,73	17,83	20,83	20,92
722	18,27	18,36	20,65	20,75	18,09	18,18	20,48	20,57
724	18,62	18,71	20,30	20,39	18,44	18,54	20,12	20,21
726	18,98	19,07	19,94	20,04	18,80	18,89	19,77	19,86
728	19,33	19,43	19,33	19,43	19,16	19,25	19,16	19,25

Table 2 — Diameters for the 710 and 720 connections

l ₁	11,1 min.	<i>d</i> ₁	$10,62 \leqslant d_1 \leqslant 10,71$		
l ₂	8,38 ^{+ 0,25} _ 0,13	d_2	8,13 max.		
l ₃	8,38 ⁰ _{-0,25}	d_3	$\textbf{26,04} \leqslant \textbf{d_3} \leqslant \textbf{26,16}$		
l_4	9,14 ^{+0,25}	d_4	1,125 external ^a		
l_5	17,15 _00,25	<i>r</i> 1	$0,25\leqslant r_{1}\leqslant 0,38$		
l ₆	42,54 max.	r ₂	$0,76\leqslant r_{2}\leqslant 0,89$		
l7	$4{,}09\leqslant \mathit{l}_7\leqslant 4{,}19$	α	$45^{\circ} \pm 5^{\circ}$		
l ₈	$0,76\leqslant l_8\leqslant 0,89$	β	$30^\circ \pm 5^\circ$		
		γ	60° ± 1°		
a Nominal diameter in inches.					

Figure 5 — Valve outlet of the 710 and 720 series connections (view from the top)