

# SLOVENSKI STANDARD SIST EN 13170:2013

01-marec-2013

Nadomešča:

**SIST EN 13170:2009** 

Toplotnoizolacijski proizvodi za stavbe - Proizvodi iz ekspandirane plute (ICB) - Specifikacija

Thermal insulation products for buildings - Factory made products of expanded cork (ICB) - Specification

Wärmedämmstoffe für Gebäude Twerkmäßig hergestellte Produkte aus expandiertem Kork (ICB) - Spezifikation (standards.iteh.ai)

Produits isolants thermiques pour le bâtiment 31 Produits manufacturés en liège expansé (ICB) - Spécification https://standards.iteh.ai/catalog/standards/sist/2cc6a6d4-c205-441b-a689-228580637a8f/sist-en-13170-2013

Ta slovenski standard je istoveten z: EN 13170:2012

ICS:

91.100.60 Materiali za toplotno in

zvočno izolacijo

Thermal and sound insulating

materials

SIST EN 13170:2013 en,fr,de

**SIST EN 13170:2013** 

# iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 13170:2013

https://standards.iteh.ai/catalog/standards/sist/2cc6a6d4-c205-441b-a689-228580637a8f/sist-en-13170-2013 EUROPEAN STANDARD

**EN 13170** 

NORME EUROPÉENNE EUROPÄISCHE NORM

November 2012

ICS 91.100.60

Supersedes EN 13170:2008

#### **English Version**

# Thermal insulation products for buildings - Factory made products of expanded cork (ICB) - Specification

Produits isolants thermiques pour le bâtiment - Produits manufacturés en liège expansé (ICB) - Spécification

Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus expandiertem Kork (ICB) - Spezifikation

This European Standard was approved by CEN on 6 October 2012.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

#### SIST EN 13170:2013

https://standards.iteh.ai/catalog/standards/sist/2cc6a6d4-c205-441b-a689-228580637a8f/sist-en-13170-2013



EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

| Conte     | 111.5                                                                                                                                               | Page |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Forewor   | d                                                                                                                                                   | 4    |
| 1 8       | Scope                                                                                                                                               | 6    |
| 2 N       | Normative references                                                                                                                                | 6    |
| 3 Т       | Terms, definitions, symbols, units and abbreviated terms                                                                                            | 8    |
|           | Requirements                                                                                                                                        |      |
|           | Test methods                                                                                                                                        |      |
|           | Designation code                                                                                                                                    |      |
|           | Evaluation of conformity                                                                                                                            |      |
| Annex A   | Marking and labelling  (normative) Determination of the declared values of thermal resistance and thermal conductivity                              |      |
|           | normative) Initial type testing (ITT) and factory production control (FPC)                                                                          |      |
|           | inormative) Multi layered insulation products (insulation cork board)                                                                               |      |
| Annex D   | (normative) Determination of the thermal conductivity in relation to moisture content                                                               | 33   |
| r         | (informative) Examples for the determination of the declared values of thermal resistance and thermal conductivity for a product or a product group | 35   |
|           | A (informative) Clauses of this European Standard addressing the provisions of the EU Construction Products Directive                               |      |
| Bibliogra | aphyhttps://standards.iteh.ai/catalog/standards/sist/2cc6a6d4-c205-441b-a689-                                                                       | 47   |
| Tables    | 228580637a8f/sist-en-13170-2013                                                                                                                     |      |
|           | Classes for length tolerances                                                                                                                       | 12   |
|           | Classes for width tolerances                                                                                                                        |      |
| Table 3 – | Classes for thickness tolerances                                                                                                                    | 12   |
| Table 4 – | Levels for bending strength                                                                                                                         | 14   |
| Table 5 – | Dimensional stability under specified temperature and humidity conditions                                                                           | 14   |
| Table 6 – | Levels for compressive stress at 10 % deformation                                                                                                   | 14   |
| Table 7 – | Levels for tensile strength perpendicular to faces                                                                                                  | 15   |
| Table 8 – | — Levels for compressibility                                                                                                                        | 16   |
| Table A.1 | 1 — Values for k for one sided 90 % tolerance interval with a confidence level of 90 %                                                              | 25   |
| Table B.1 | 1 — Minimum number of tests for ITT and minimum product testing frequencies                                                                         | 27   |
| Table B.2 | 2 — Minimum product testing frequencies for the reaction to fire characteristics                                                                    | 29   |
| Table E.1 | 1 — $\lambda$ test results                                                                                                                          | 35   |

| Table E.2 — R test results                                                                                                                | 36 |
|-------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table ZA.1 — Relevant clauses for Expanded Cork and intended use                                                                          | 39 |
| Table ZA.2 — Systems of attestation of conformity                                                                                         | 41 |
| Table ZA.3 — Assignment of evaluation of conformity tasks for products under system 1 for reaction and system 3 for other characteristics |    |
| Table ZA.4 — Assignment of evaluation of conformity tasks for products under system 3 or s combined with system 4 for reaction to fire    |    |
| Figures                                                                                                                                   |    |
| Figure D.1 — Example of a graphic representation of "a"                                                                                   | 34 |
| Figure ZA.1 — Example CE marking information                                                                                              | 46 |

# iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 13170:2013

https://standards.iteh.ai/catalog/standards/sist/2cc6a6d4-c205-441b-a689-228580637a8f/sist-en-13170-2013

#### **Foreword**

This document (EN 13170:2012) has been prepared by Technical Committee CEN/TC 88 "Thermal insulating materials and products", the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2013, and conflicting national standards shall be withdrawn at the latest by May 2013.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 13170:2008.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this document.

Compared with EN 13170:2008, the main changes are:

- a) better harmonisation between the individual standards of the package (EN 13162 to EN 13171) on definitions, requirements, classes and levels; ndards.iteh.ai)
- b) new normative annex on multi-layered products;

SIST EN 13170:2013

- c) changes on some editorial and technical content and addition of information on some specific items such as for ICB; 228580637a8fsist-en-13170-2013
- d) addition of links to EN 15715, Thermal insulation products Instructions for mounting and fixing for reaction to fire testing Factory made products;
- e) changes to Annex ZA.

This standard is one of a series of standards for insulation products used in buildings, but may be used in other areas where appropriate.

In pursuance of Resolution BT 20/1993 revised, CEN/TC 88 have proposed defining the standards listed below as a "package" of documents.

The package of standards comprises the following group of interrelated standards for the specifications of factory made thermal insulation products, all of which come within the scope of CEN/TC 88:

EN 13162, Thermal insulation products for buildings — Factory made mineral wool (MW) products — Specification

EN 13163, Thermal insulation products for buildings — Factory made expanded polystyrene (EPS) products — Specification

EN 13165, Thermal insulation products for buildings — Factory made rigid polyurethane foam (PU) products — Specification

EN 13166, Thermal insulation products for buildings — Factory made phenolic foam (PF) products — Specification

EN 13167, Thermal insulation products for buildings — Factory made cellular glass (CG) products — Specification

EN 13168, Thermal insulation products for buildings — Factory made wood wool (WW) products — Specification

EN 13169, Thermal insulation products for buildings — Factory made expanded perlite board (EPB) products — Specification

EN 13170, Thermal insulation products for buildings — Factory made products of expanded cork (ICB) — Specification

EN 13171, Thermal insulation products for buildings — Factory made wood fibre (WF) products — Specification

The reductions in energy used and emissions produced during the installed life of insulation products exceeds by far the energy used and emissions made during the production and disposal processes.

According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

(standards.iteh.ai)

SIST EN 13170:2013 https://standards.iteh.ai/catalog/standards/sist/2cc6a6d4-c205-441b-a689-228580637a8f/sist-en-13170-2013

#### 1 Scope

This European Standard specifies the requirements for factory made products of expanded cork, which are used for the thermal insulation of buildings. The products are made with granulated cork agglomerated without additional binders and are delivered as boards with or without facings or coatings.

Products covered by this standard are also used in prefabricated thermal insulation systems and composite panels; the performance of systems incorporating these products is not covered.

This standard describes product characteristics and includes procedures for testing, evaluation of conformity, marking and labelling.

This standard does not specify the required level of a given property to be achieved by a product to demonstrate fitness for purpose in a particular application. The levels required for a given application are to be found in regulations or non-conflicting standards.

Products with a declared thermal resistance lower than 0,25 m<sup>2</sup>·K/W, or a declared thermal conductivity greater than 0,060 W/(m·K), at 10 °C, are not covered by this European Standard.

#### 2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- EN 822, Thermal insulating products for building applications— Determination of length and width
- EN 823, Thermal insulating products for building applications Determination of thickness SISTEN 13170:2013
- EN 824, Thermal insulating products for building applications six Determination of squareness 228580637a8f/sist-en-13170-2013
- EN 825, Thermal insulating products for building applications Determination of flatness
- EN 826, Thermal insulating products for building applications Determination of compression behaviour
- EN 1602, Thermal insulating products for building applications Determination of the apparent density
- EN 1603, Thermal insulating products for building applications Determination of dimensional stability under constant normal laboratory conditions (23 °C/50 % relative humidity)
- EN 1604, Thermal insulating products for building applications Determination of dimensional stability under specified temperature and humidity conditions
- EN 1605, Thermal insulating products for building applications Determination of deformation under specified compressive load and temperature conditions
- EN 1606, Thermal insulating products for building applications Determination of compressive creep
- EN 1607, Thermal insulating products for building applications Determination of tensile strength perpendicular to faces
- EN 1609, Thermal insulating products for building applications Determination of short term water absorption by partial immersion
- EN 12086, Thermal insulating products for building applications Determination of water vapour transmission properties
- EN 12089, Thermal insulating products for building applications Determination of bending behaviour

EN 12090, Thermal insulating products for building applications — Determination of shear behaviour

EN 12105, Resilient floor coverings — Determination of moisture content of agglomerated composition cork

EN 12430, Thermal insulating products for building applications — Determination of behaviour under point load

EN 12431, Thermal insulating products for building applications — Determination of thickness for floating floor insulation products

EN 12667, Thermal performance of building materials and products — Determination of thermal resistance by means of guarded hot plate and heat flow meter methods — Products of high and medium thermal resistance

EN 12939, Thermal performance of building materials and products — Determination of thermal resistance by means of guarded hot plate and heat flow meter methods — Thick products of high and medium thermal resistance

EN 13172:2012, Thermal insulation products — Evaluation of conformity

EN 13501-1, Fire classification of construction products and building elements — Part 1: Classification using data from reaction to fire test

EN 13820, Thermal insulating materials for building applications – Determination of organic content

EN 13823, Reaction to fire test for building products — Building products excluding floorings exposed to the thermal attack by a single burning item ANDARD PREVIEW

EN 15715:2009, Thermal insulation products - Instructions for mounting and fixing for reaction to fire testing – Factory made products

EN 29052-1, Acoustics — Determination of dynamic stiffness — Part 1: Materials used under floating floors in dwellings (ISO 9052-1) 228580637a8f/sist-en-13170-2013

EN 29053, Acoustics — Materials for acoustical applications - Determination of air flow resistance (ISO 9053)

EN ISO 354, Acoustics — Measurement of sound absorption in a reverberation room (ISO 354)

EN ISO 1182, Reaction to fire tests for building products — Non-combustibility test (ISO 1182)

EN ISO 1716, Reaction to fire tests for products — Determination of the gross heat of combustion (calorific value) (ISO 1716)

EN ISO 9229:2007, Thermal insulation — Vocabulary (ISO 9229:2007)

EN ISO 10456, Building materials and products — Hygrothermal properties — Tabulated design values and procedures for determining declared and design thermal values (ISO 10456)

EN ISO 11654, Acoustics — Sound absorbers for use in buildings — Rating of sound absorption (ISO 11654)

EN ISO 11925-2, Reaction to fire tests — Ignitability of building products subjected to direct impingement of flame — Part 2: Single-flame source test (ISO 11925-2)

ISO 16269-6:2005, Statistical interpretation of data — Part 6: Determination of statistical tolerance intervals

#### 3 Terms, definitions, symbols, units and abbreviated terms

#### 3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in EN ISO 9229:2007 apply with exception or in addition of the following:

#### 3.1.1

#### cork

protective layer of the cork oak tree (*Quercus suber* L.) which may be periodically removed from its trunk and branches to provide the raw material for cork products

#### 3.1.2

#### granulated cork

fragments of cork obtained by grinding and/or milling raw or manufactured cork

Note 1 to entry: Usually, the size of granules is between 4 mm and 18 mm.

#### 3.1.3

#### insulation cork board (ICB)

pre-formed product made from ground granulated cork expanded and bonded exclusively with its own natural binder exuded from cork cell walls by heating under pressure

#### 3.1.4

#### level

value which is the upper or lower limit of a requirement and given by the declared value of the characteristic concerned

(standards.iteh.ai)

#### 3.1.5

#### class

#### SIST EN 13170:2013

combination of two levels of the same property between which the performance shall fall)

228580637a8f/sist-en-13170-2013

#### 3.1.6

#### board; slab

rigid or semi-rigid (insulation) product of rectangular shape and cross section in which the thickness is uniform and substantially smaller than the other dimensions

Note 1 to entry Boards are usually thinner than slabs. They may also be supplied in tapered form.

#### 3.1.7

#### facing

functional or decorative surface layer with a thickness of less than 3 mm, e.g. paper, plastic film, fabric or metal foil, which are not considered as separate thermal insulation layers to be added to the thermal resistance of the product

#### 3.1.8

#### coating

functional or decorative surface layers with a thickness of less than 3 mm usually applied by painting, spraying, pouring or trowelling, which are not considered as separate thermal insulation layers to be added to the thermal resistance of the product

#### 3.1.9

#### composite insulation product

product which can be faced or coated made from two or more layers bonded together by chemical or physical adhesion consisting of at least one factory made thermal insulation material layer

#### 3.1.10

### multi-layered insulation product

product which can be faced or coated made from two or more layers of a thermal insulation material from the same European Standard, which are bonded together by chemical or physical adhesion either horizontally and/or vertically

## 3.2 Symbols, units and abbreviated terms

For the purposes of this document, the following symbols and units apply.

| $lpha_{p}$                     | is the practical sound absorption coefficient                                                                                                    | _                   |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| $lpha_{\!\scriptscriptstyleW}$ | is the weighted sound absorption coefficient                                                                                                     | _                   |
| b                              | is the width                                                                                                                                     | mm                  |
| c                              | is the compressibility                                                                                                                           | mm                  |
| d                              | is the thickness under a load of (250 $\pm$ 5) Pa                                                                                                | mm                  |
| $d_{B}$                        | is the thickness under a load of 2 kPa after removal of an additional load of 48 kPa                                                             | mm                  |
| $d_{L}$                        | is the thickness under a load of 250 Pa                                                                                                          | mm                  |
| $d_{N}$                        | is the nominal thickness of the product                                                                                                          | mm                  |
| $d_{S}$                        | is the thickness of the test specimen                                                                                                            | mm                  |
| $\Deltaarepsilon_{b}$          | is the relative change in width RD PREVIEW                                                                                                       | %                   |
| $\Delta arepsilon_{	extsf{d}}$ | is the relative change in thickness (standards.iteh.ai)                                                                                          | %                   |
| $\Deltaarepsilon_{eta}$        | is the relative change in length                                                                                                                 | %                   |
| $\Delta arepsilon_{	extsf{S}}$ | is the relative change in flatness 170:2013                                                                                                      | mm/m                |
| $\varepsilon$                  | https://standards.iteh.ai/catalog/standards/sist/2cc6a6d4-c205-441b-a689-<br>is the deformation under specified compressive load and temperature | mm                  |
| $arepsilon_{	ext{ct}}$         | is the compressive creep                                                                                                                         | %                   |
| $arepsilon_{t}$                | is the total relative thickness reduction                                                                                                        | %                   |
| $F_{p}$                        | is the compressive force at critical point                                                                                                       | kN                  |
| H                              | is the moisture content                                                                                                                          | %                   |
| k                              | is a factor related to the number of test results available                                                                                      | _                   |
| l                              | is the length                                                                                                                                    | mm                  |
| $\lambda_{90/90}$              | is the 90 % fractile with a confidence level of 90 % for the thermal conductivity                                                                | W/(m·K)             |
| $\lambda_{D}$                  | is the declared thermal conductivity                                                                                                             | $W/(m \cdot K)$     |
| $\lambda_{i}$                  | is one test result of thermal conductivity                                                                                                       | $W/(m \cdot K)$     |
| $\lambda_{mean}$               | is the mean thermal conductivity                                                                                                                 | W/(m·K)             |
| $\lambda_{U}$                  | is the design thermal conductivity                                                                                                               | W/(m·K)             |
| n                              | is the number of test results                                                                                                                    | _                   |
| R <sub>90/90</sub>             | is the 90 % fractile with a confidence level of 90 % for the thermal resistance                                                                  | m <sup>2</sup> ·K/W |
| $R_{D}$                        | is the declared thermal resistance                                                                                                               | $m^2 \cdot K/W$     |
| $R_{i}$                        | is one test result of thermal resistance                                                                                                         | m <sup>2</sup> ·K/W |
| R <sub>mean</sub>              | is the mean thermal resistance                                                                                                                   | m <sup>2</sup> ·K/W |

| $R_{U}$                                   | is the design thermal resistance                                                            | m²⋅K/W            |
|-------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|
| $ ho_{a}$                                 | is the apparent density                                                                     | kg/m <sup>3</sup> |
| $S_{b}$                                   | is the deviation from squareness on length and width                                        | mm/m              |
| $S_{d}$                                   | is the deviation from squareness on thickness                                               | mm                |
| $S_{\sf max}$                             | is the deviation from flatness                                                              | mm                |
| $X_0$                                     | is the initial deformation                                                                  | %                 |
| $X_t$                                     | is the total thickness reduction                                                            | %                 |
| $X_{ct}$                                  | Is the compressive creep                                                                    | %                 |
| <i>§</i> R                                | is the estimate of the standard deviation of the thermal resistance                         | m²⋅K/W            |
| $s_{\lambda}$                             | is the estimate of the standard deviation of the thermal conductivity                       | W/(m·K)           |
| s'                                        | is the dynamic stiffness                                                                    | MN/m <sup>3</sup> |
| $\sigma_{10}$                             | is the compressive stress at 10 % deformation                                               | kPa               |
| $\sigma_{\!	extsf{b}}$                    | is the bending strength                                                                     | kPa               |
| $\sigma_{\!\scriptscriptstyle 	extsf{C}}$ | is the declared compressive stress (for compressive creep)                                  | kPa               |
| $\sigma_{mt}$                             | is the tensile strength perpendicular to faces                                              | kPa               |
| $W_{p}$                                   | is the short-term water absorption                                                          | kg/m²             |
| τ                                         | is the shear strength STANDARD PREVIEW                                                      | kPa               |
| Z                                         | is the water vapour resistance ndards.iteh.ai)                                              | m².h.Pa/mg        |
| $AF_r$                                    | is the symbol of the declared level of air flow resistivity                                 |                   |
| AP                                        | is the symbol of the declared level of practical sound absorption coefficient               |                   |
| AW                                        | is the symbol of the declared level of weighted sound absorption coefficient                |                   |
| CC(i $_1$ /i $_2$ /y) $\sigma_{_{\! C}}$  | is the symbol of the declared level for compressive creep                                   |                   |
| CP                                        | is the symbol of the declared level for compressibility                                     |                   |
| CS(10)                                    | is the symbol of the declared level for compressive stress at 10 % deformation              | on                |
| DS(23,90) or<br>DS(70,90)                 | is the symbol of the level for dimensional stability under specified temperature conditions | e and humidity    |
| DS(70,-)                                  | is the symbol of the declared value for dimensional stability at specified temp             | perature          |
| DLT                                       | is the symbol of the declared value for the deformation under specified load temperature    | and               |
| L                                         | is the symbol of the declared class for length tolerances                                   |                   |
| MU                                        | is the symbol of the declared value for water vapour diffusion resistance fact              | or                |
| PL(P)                                     | is the symbol of the declared level of point load at the critical point                     |                   |
| SD                                        | is the symbol of the declared level for dynamic stiffness                                   |                   |
| SS                                        | is the symbol of the declared value for shear strength                                      |                   |
| Ti                                        | is the symbol of the declared class for thickness tolerances                                |                   |
| TR                                        | is the symbol of the declared level for tensile strength perpendicular to faces             |                   |
| W                                         | is the symbol of the declared class for width tolerances                                    |                   |
| WS                                        | is the declared value for short term water absorption                                       |                   |
| Z                                         | is the symbol of the declared value for water vapour resistance                             |                   |

#### Abbreviated terms used in this standard:

ICB is Expanded (Insulation) Cork Board

ITT is Initial Type Test

FPC is Factory Production Control

RtF is **R**eaction to **F**ire

## 4 Requirements

#### 4.1 General

Product properties shall be assessed in accordance with Clause 5. To comply with this standard, products shall meet the requirements of 4.2 and of 4.3, as appropriate.

For multi-layered products additional requirements are given in Annex C.

One test result for a product property is the average of the measured values on the number of test specimens given in Table 9.

#### 4.2 For all applications

# 4.2.1 Thermal resistance and thermal conductivity

Thermal resistance and thermal conductivity shall be based upon measurements carried out in accordance with EN 12667 or EN 12939 for thick products and in accordance with 5.3.2 and Annex C.

The thermal resistance and thermal conductivity shall be determined in accordance with procedures given in Annex A and declared by the manufacturer according to the following:

- the reference mean temperature shall be 10 °C;
- the declared values are to be given for a moisture content equal to that of the material when it has reached equilibrium with the air at 23 °C and relative humidity 50 %;
- the measured values shall be expressed with three significant figures;
- for products of uniform thickness, the thermal resistance,  $R_D$ , shall always be declared. The thermal conductivity,  $\lambda_D$ , shall be declared where possible. Where appropriate, for products of non-uniform thickness (e.g. for sloped and tapered products), only the thermal conductivity,  $\lambda_D$ , shall be declared;
- the declared thermal resistance,  $R_D$ , and the declared thermal conductivity,  $\lambda_D$ , shall be given as limit values representing at least 90 % of the production, determined with a confidence level of 90 %;
- the statistical value of thermal conductivity,  $\lambda_{90/90}$ , shall be rounded upwards to the nearest 0,001 W/(m·K) and declared as  $\lambda_D$  in levels with steps of 0,001 W/(m·K);
- the declared thermal resistance,  $R_{\rm D}$ , shall be calculated from the nominal thickness,  $d_{\rm N}$ , or  $d_{\rm L}$  in case of products with declared compressibility (see 4.3.10.3) and the corresponding thermal conductivity,  $\lambda_{90/90}$ , unless measured directly;
- the statistical value of thermal resistance,  $R_{90/90}$ , when calculated from the nominal thickness,  $d_N$ , or  $d_L$  in case of products with declared compressibility (see 4.3.10.3) and the corresponding thermal conductivity,