

Reference number
ISO/IEC 10476-4:1998/Amd.1:2001(E)

© ISO/IEC 2001

INTERNATIONAL
STANDARD

ISO/IEC
10746-4

First edition
1998-12-15

AMENDMENT 1
2001-12-15

Information technology — Open Distributed
Processing — Reference Model:
Architectural semantics

AMENDMENT 1: Computational formalization

Technologies de l'information — Traitement réparti ouvert — Modèle de
référence: Sémantique architecturale

AMENDEMENT 1: Formalisation informatique

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

ISO/IEC 10746-4:1998/Amd.1:2001(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2001
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Published by ISO in 2002
Printed in Switzerland

ii © ISO/IEC 2001 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

ISO/IEC 10746-4:1998/Amd.1:2001(E)

© ISO/IEC 2001 – All rights reserved iii

CONTENTS

Page

1) Introduction.. 1

2) Clause 1 – Scope ... 1

3) Clause 2 – Normative references ... 2

4) Subclause 3.2 – Definitions from ITU-T Recommendation Z.100 .. 2

5) Subclause 3.3 – Definitions from the Z-Base Standard .. 2

6) Annex A.. 3

Annex A – Computational Formalization... 3
A.1 Formalization of the Computational Viewpoint Language in LOTOS.. 3
A.2 Formalization of the Computational Viewpoint Language in SDL... 12
A.3 Formalization of the Computational Viewpoint Language in Z ... 20
A.4 Formalization of the Computational Viewpoint Language in ESTELLE.. 28

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

ISO/IEC 10746-4:1998/Amd.1:2001(E)

iv © ISO/IEC 2001 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards
adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this Amendment may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to International Standard ISO/IEC 10746-4:1998 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 7, Software engineering, in collaboration with ITU-T.
The identical text is published as ITU-T Rec. X.904/Amd.1. iTeh STANDARD PREVIEW

(standards.iteh.ai)
ISO/IEC 10746-4:1998/Amd 1:2001

https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-
8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

ISO/IEC 10746-4:1998/Amd.1:2001 (E)

ITU-T Rec. X.904/Amd.1 (2000 E) 1

INTERNATIONAL STANDARD
ISO/IEC 10746-4:1998/Amd.1:2001 (E)
ITU-T Rec. X.904/Amd.1 (2000 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING –
REFERENCE MODEL: ARCHITECTURAL SEMANTICS

AMENDMENT 1

Computational formalization

1) Introduction

Replace the lst paragraph of the introduction

This Recommendation | International Standard is an integral part of the ODP Reference Model. It contains a
formalisation of the ODP modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9. The
formalisation is achieved by interpreting each concept in terms of the constructs of the different standardised formal
description techniques.

with

This Recommendation | International Standard is an integral part of the ODP Reference Model. It contains a
formalization of the ODP modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9 and in
ITU-T Rec. X.903 | ISO/IEC 10746-3, clause 7 (Computational Language). The formalization is achieved by interpreting
each concept in terms of the constructs of the different standardized formal description techniques.

2) Clause 1 – Scope

Replace the fourth bullet under The RM-ODP consists of

ITU-T Rec. X.904 | ISO/IEC 10746-4: Architectural Semantics: contains a formalisation of the ODP modelling
concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9, and a formalisation of the viewpoint
languages of ITU-T Rec. X.903 | ISO/IEC 10746-3. The formalisation is achieved by interpreting each concept in terms
of the constructs of the different standardised formal description techniques. This text is normative.

with

ITU-T Rec. X.904 | ISO/IEC 10746-4: Architectural Semantics: contains a formalization of the ODP modelling
concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9, and a formalization of the computational
viewpoint language of ITU-T Rec. X.903 | ISO/IEC 10746-3. The formalization is achieved by interpreting each concept
in terms of the constructs of the different standardized formal description techniques. This text is normative.

Replace the fourth paragraph

The purpose of this Recommendation | International Standard is to provide an architectural semantics for ODP. This
essentially takes the form of an interpretation of the basic modelling and specification concepts of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and the viewpoint languages of ITU-T Rec. X.903 | ISO/IEC 10746-3, using the various features of
different formal specification languages. An architectural semantics is developed in four different formal specification
languages: LOTOS, ESTELLE, SDL and Z. The result is a formalisation of ODP's architecture. Through a process of
iterative development and feedback, this has improved the consistency of ITU-T Rec. X.902 | ISO/IEC 10746-2 and
ITU-T Rec. X.903 | ISO/IEC 10746-3.

with

The purpose of this Recommendation | International Standard is to provide an architectural semantics for ODP. This
essentially takes the form of an interpretation of the basic modelling and specification concepts of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and the computational viewpoint language of ITU-T Rec. X.903 | ISO/IEC 10746-3, using the various
features of different formal specification languages. An architectural semantics is developed in four different formal

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

2 ITU-T Rec. X.904/Amd.1 (2000 E)

specification languages: LOTOS, ESTELLE, SDL and Z. The result is a formalization of ODP's architecture. Through a
process of iterative development and feedback, this has improved the consistency of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3.

Add the following paragraph at the end of Scope:

Annex A shows one way in which the computational viewpoint language of ITU-T Rec. X.903 | ISO/IEC 10746-3 can be
represented in the formal languages LOTOS, SDL, Z and Estelle. This Recommendation | International Standard also
makes use of the concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2.

3) Clause 2 – Normative references

Change publication date for ITU-T Recommendation Z.100 from (1993) to (1999).

ISO/IEC 13568:

Add the following reference:

Z Notation, ISO/IEC JTC 1 SC 22 WG 19 Advanced Working Draft 2.C, July 13th 1999.

4) Subclause 3.2 – Definitions from ITU-T Recommendation Z.100

Replace the list with the following terms:

active, adding, all, alternative, and, any, as, atleast, axioms, block, call, channel, comment, connect, connection,
constant, constants, create, dcl, decision, default, else, endalternative, endblock, endchannel, endconnection,
enddecision, endgenerator, endnewtype, endoperator, endpackage, endprocedure, endprocess, endrefinement, endselect,
endservice, endstate, endsubstructure, endsyntype, endsystem, env, error, export, exported, external, fi, finalized, for,
fpar, from, gate, generator, if, import, imported, in, inherits, input, interface, join, literal, literals, map, mod, nameclass,
newtype, nextstate, nodelay, noequality, none, not, now, offspring, operator, operators, or, ordering, out, output,
package, parent, priority, procedure, process, provided, redefined, referenced, refinement, rem, remote, reset, return,
returns, revealed, reverse, save, select, self, sender, service, set, signal, signallist, signalroute, signalset, spelling, start,
state, stop, struct, substructure, synonym, syntype, system, task, then, this, timer, to, type, use, via, view, viewed, virtual,
with, xor.

5) Subclause 3.3 – Definitions from the Z-Base Standard

Change subclause title to:

3.3 – Definitions from the Z Notation.

Replace the list with following terms:

axiomatic description, data refinement, hiding, operation refinement, overriding, schema (operation, state, framing),
schema calculus, schema composition, sequence, type.

ISO/IEC 10746-4:1998/Amd.1:2001 (E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

ISO/IEC 10746-4:1998/Amd.1:2001 (E)

ITU-T Rec. X.904/Amd.1 (2000 E) 3

6) Annex A

Add a new Annex A as follows:

Annex A

Computational Formalization

A.1 Formalization of the Computational Viewpoint Language in LOTOS

A.1.1 Concepts

The formalization of the computational language in LOTOS uses the concepts defined in the formalization of the basic
modelling and structuring rules given in ITU-T Rec. X.902 | ISO/IEC 10746-2 clauses 8 and 9.

Elementary Structures Associated with Operational and Signal Interfaces

To formalize the computational language in LOTOS it is necessary to introduce certain elementary structures. These
include parameters that might be associated with certain computational interfaces and a basic model of information that
might be used in a stream flow.

To formalize parameters it is necessary to introduce two concepts: names for things and types for things. Names are
simply labels. As we shall see, the computational viewpoint requires that checks, e.g. for equality, are done on these
labels when interfaces are constructed. We may represent names generally by:

type Name is Boolean
sorts Name
opns newName: -> Name

anotherName: Name -> Name
eq,_ne_: Name, Name -> Bool

endtype (* Name *)

For brevity sake we omit the equations, which are expected to be obvious. It is possible to be more prescriptive here, e.g.
using character strings from the LOTOS library. The only thing we are interested in regarding names is that we can
determine their equality or inequality.

As discussed in this Recommendation | International Standard, a type in the ODP sense may not be interpreted directly in
the process algebra part of LOTOS. It is however possible to model types through the Act One part of LOTOS.
Unfortunately, whilst Act One was designed specifically for representing types, it is limited in the ways in which types
and types relationships are checked. For example, it is not possible to check subtyping or equivalence up to isomorphism
between types due to type equality in Act One being based on name equivalence of sorts. As a basis for reasoning here
we introduce an elementary notion of types that allows us to test for equality, inequality and subtyping.

type AnyType is Boolean
sorts AnyType
opns newType: -> AnyType

anotherType: AnyType -> AnyType
eq,_isSubtype_: AnyType, AnyType -> Bool

endtype (* AnyType *)

A parameter is a relation between a name and its underlying type representation. Thus a parameter may be represented
by:

type Param is Name, AnyType
sorts Param
opns newParam: Name, AnyType -> Param

eq,_ne_,_isSubtype_: Param, Param -> Bool
endtype (* Param *)

As previously, we require checks on the equality or inequality of parameters as well as when one parameter is a subtype
of another. Two parameters are in a subtype relationship when their types are in a subtype relationship. It is also useful
for us to introduce sequences of these parameters.

type PList is String actualizedby Param
using sortnames PList for String Param for Element Bool for FBool
opns _isSubtype_: PList, PList -> Bool

endtype (* PList *)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

4 ITU-T Rec. X.904/Amd.1 (2000 E)

Here we use the type String from the LOTOS library actualised with the type Param defined previously. We also include
an operation here isSubtype that can check whether one sequence of parameters is a subtype of another. One parameter
list is a subtype of a second when all of the parameters it contains are subtypes of those found in the first. In addition the
parameters should be in the same position in their respective lists. It should be noted that these parameters might contain
references to interfaces used to restrict the interactions that can take place. Whilst it is quite possible to model an
interface in the process algebra, it is not possible to model a reference to that interface in the process algebra that, loosely
speaking, captures the functionality of that interface. To overcome this, we model interface references in Act One. Given
that an interface reference captures, amongst other things, the signature of the interface, we provide an Act One model of
signatures for operations. Operations consist of a name, a sequence of inputs and possibly a sequence of outputs. For
simplicity’s sake, we do not consider here whether the operation is of infix, prefix or suffix notation. This may be
represented by:

type Op is Name, PList
sorts Op
opns makeOp: Name, PList -> Op

makeOp: Name, PList, PList -> Op
getName: Op -> Name
getInps: Op -> PList
getOuts: Op -> PList
eq: Op, Op -> Bool

eqns forall op1,op2: Op, n: Name; pl1, pl2: PList
ofsort Name getName(makeOp(n,pl1,pl2)) = n;
ofsort PList getInps(makeOp(n,pl1)) = pl1;

getInps(makeOp(n,pl1,pl2)) = pl1;
getOuts(makeOp(n,pl1)) = <>;
getOuts(makeOp(n,pl1,pl2)) = pl2;

ofsort Bool op1 eq op2 = ((getName(op1) eq getName(op2)) and
(getInps(op1) isSubtype getInps(op2)) and
(getOuts(op2) isSubtype getOuts(op1)));

endtype (* Op *)

Having a method of determining whether two operations are the same reduces the problem of subtyping between abstract
data types to a set comparison, where set elements are the created operations. Thus a server is a subtype of a second
server if it supports all operations of the second server. We note here that we model two forms of operations: those that
do not expect results and those that do expect results. We also introduce sets of these operations:

type OpSet is Set actualizedby Op
using sortnames OpSet for Set Op for Element Bool for FBool

endtype (* OpSet *)

Now an interface reference may be represented by the following LOTOS fragment:

type IRef is OpSet
sorts IRef
opns makeIRef : OpSet -> IRef

NULL : -> IRef
getOps : IRef -> OpSet
eq : IRef, IRef -> Bool

eqns forall o: OpSet; ir1, ir2: IRef
ofsort OpSet getOps(makeIRef(o)) = o;
ofsort Bool ir1 eq ir2 = getOps(ir1) eq getOps(ir2) ;

endtype (* IRef *)

Here we note that equality of interface references is based only on the operations contained in that reference. It might
well be extended to cover other aspects, e.g. the location of the interface or constraints on its usage. We also introduce
sets of these interface references.

type IRefSet is Set actualizedby IRef
using sortnames IRefSet for Set IRef for Element Bool for FBool

endtype (* IRefSet *)

Elementary Structures Associated with Stream Interfaces

The computational viewpoint of ITU-T Rec. X.903 | ISO/IEC 10746-3 also considers interfaces concerned with the
continuous flow of data, e.g. multimedia. These interfaces are termed stream interfaces. Stream interfaces contain finite
sets of flows. These flows may be from the interface (produced) or to the interface (consumed). Each flow is modelled
through an action template. Each action template contains the name of the flow, the type of the flow, and an indication of
causality for the flow.

The computational viewpoint abstracts away from the contents of the flow of information itself. We consider here a
generic idea of information flow where the flow of information is represented by a sequence of flow elements. A flow

ISO/IEC 10746-4:1998/Amd.1:2001 (E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

ISO/IEC 10746-4:1998/Amd.1:2001 (E)

ITU-T Rec. X.904/Amd.1 (2000 E) 5

element may be regarded as a particular item in the flow of information. We note here that flows are regarded in the
computational viewpoint as continuous actions. In our model here we represent streams as sequences of discrete timed
events. On the one hand this allows us to deal with the timing issues of information flows but we achieve this at the cost
of losing the continuous nature of the flows.

Each flow element in an information flow can be considered as a unit consisting of data (this may be compressed) which
we represent by Data. This model might include how the information was compressed, what information was
compressed, etc. As such it is not considered further here. Flow elements also contain a time stamp used for modelling
the time at which the particular flow element was sent or received. It is also often the case in multimedia flows that
particular flow elements are required for synchronisation, e.g. synchronisation of audio with video for example.
Therefore we associate a particular Name with each flow element. This can then be used for selecting a particular flow
element from the flow as required. From this, we may model a flow element as:

type FlowElement is Name, NaturalNumber, Data, Param
sorts FlowElement
opns makeFlowElement: Data, Nat, Name -> FlowElement

nullFlowElement : -> FlowElement
getData : FlowElement -> Data
getTime : FlowElement -> Nat
getName : FlowElement -> Name
toParam : FlowElement -> Param
setTime : Nat, FlowElement -> FlowElement

eqns forall d: Data, s,t: Nat, n: Name
ofsort Data getData(makeFlowElement(d,t,n)) = d;
ofsort Nat getTime(makeFlowElement(d,t,n)) = t;
ofsort Name getName(makeFlowElement(d,t,n)) = n;
ofsort FlowElement setTime(s,makeFlowElement(d,t,n)) = makeFlowElement(d,s,n);

endtype (* FlowElement *)

It should be noted here that we model time as a natural number however it might well be the case that real (dense) time
could be used, or time intervals. For simplicity here though, we restrict ourselves to discrete time represented as a natural
number. We also introduce an operation that converts a flow element into a parameter. For simplicity we omit the
associated equations. We also introduce sequences of these flow elements:

type FlowElementSeq is FlowElement
sorts FlowElementSeq
opns makeFlowElementSeq: -> FlowElementSeq

addFlowElement: FlowElement, FlowElementSeq -> FlowElementSeq
remFlowElement: FlowElement, FlowElementSeq -> FlowElementSeq
getFlowElement: Name, FlowElementSeq -> FlowElement
timeDiff: FlowElement, FlowElement -> Nat

eqns forall f1, f2: FlowElement, fs: FlowElementSeq, n1,n2: Name
ofsort FlowElementSeq
getTime(f1) le getTime(f2) =>

addFlowElement(f1,addFlowElement(f2,makeFlowElementSeq)) =
addFlowElement(f2,makeFlowElementSeq);

ofsort FlowElement
getFlowElement(n1,makeFlowElementSeq) = nullFlowElement;
n1 ne n2 =>

getFlowElement(n1,addFlowElement(makeFlowElement(d,t,n2),fs)) =
getFlowElement(n1,fs);

n1 eq n2 =>
getFlowElement(n1,addFlowElement(makeFlowElement(d,t,n2),fs)) =

makeFlowElement(d,t,n2);
endtype (* FlowElementSeq *)

For brevity we do not supply all of the equations. Flow elements are added to the sequence provided they have increasing
timestamps. An operation is provided for traversing a sequence of flow elements to find a named flow element. We also
introduce an operation to get the time difference between time stamps of two flow elements. It is possible using this
operation to specify, for example, that all flow elements in a sequence are separated by equal time stamps. In this case
we have an isochronous flow. We also introduce sets of these sequences of flow elements:

type FlowElementSeqSet is Set actualizedby FlowElementSeq
using sortnames FlowElementSeqSet for Set FlowElementSeq for Element Bool for FBool

endtype (* FlowElementSeqSet *)

A.1.1.1 Signal

There is no inherent feature of LOTOS which can be used to distinguish between a signal, a stream flow and an
operation. It may be the case, however, that a style of LOTOS can be used to distinguish between signals, streams and

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

6 ITU-T Rec. X.904/Amd.1 (2000 E)

operations. For example, all signals might have similar formats for their event offers. An example of one possible format
for the server side of a signal is shown in the following LOTOS fragment.

<g> ?<sigName: Name> !<myRef> ?<inArgs: PList>;

Here and in the rest of A.1, we adopt the notation that <X> represents a placeholder for an X, i.e. g, sigName, myRef and
inArgs represent placeholders for the gate, the name of the signal, the interface reference associated with the server
offering this signal and the parameters associated with the signal respectively.

An example of one possible format for the client side of a signal is shown in the following LOTOS fragment:

<g> !<sigName> !<SomeIRef> !<inArgs>;

Here the client side of the signal contains a gate (g), a label for the signal name (sigName), a reference to the object the
signal is to be sent to (SomeIRef) and the parameters associated with the signal (inArgs). We shall see in A.1.1.11 how
these event offers may be used to construct signal interface signatures.

A.1.1.2 Operation

The occurrence of an interrogation or announcement.

A.1.1.3 Announcement

An interaction that consists of one invocation only. Due to the reasons given in A.1.1.1, only an informal modelling
convention can be used to model announcements. One example of this for the client side of an announcement might be
represented by:

<g> !<invName> !<SomeIRef> !<inArgs>;

The server side of an announcement might be represented by:

<g> ?<invName: Name> !<myRef> ?<inArgs: PList>;

The data structures here are similar to those in A.1.1.1. We shall see in A.1.1.12 how these event offers may be used to
construct parts of operation interface signatures.

A.1.1.4 Interrogation

An invocation from a client to a server followed by one of the possible terminations from that server to that client.
However, due to the reasons given in A.1.1.1, only an informal modelling convention can be used to model
interrogations. One example of this for the client side of an interrogation might be represented by:

<g> !<invName> !<SomeIRef> !<inArgs> !<outArgs>;
(<g> ?<termName:Name> !<myRef> ?<outArgs: PList>; (* ... other behaviour *)

[] (* ... other terminations *))

Here termName represents the termination names and outArgs represents the output parameters. The server side of an
interrogation might be represented by:

<g> ?<invName: Name> !<myRef> ?<inArgs: PList> ?<outArgs: PList>;
(<g> !<termName> !<SomeIRef> !<outArgs>; (* ... other behaviour *)

[] (* ... other terminations *))

The other data structures here are similar to those in A.1.1.1. We shall see in A.1.1.12 how these event offers may be
used to construct parts of operation interface signatures.

A.1.1.5 Flow

An abstraction of a sequence of interactions between a producer and a consumer object that result in the conveyance of
information. Due to the reasons given in A.1.1.1, flows may only be represented in LOTOS through informal modelling
conventions. It is often the case that flows have strict temporal requirements placed on them. One example of how this
might be achieved for flow production is through a process that is parameterised by a sequence of data structures to be
sent, e.g. flow elements that can be timestamped when they are sent. A simple example of how this might be modelled in
LOTOS is:

process ProduceAction[g, ...](... toSend: FlowElementSeq, tnow: Nat, rate: Nat ...):noexit:=
g !<flowName> !<SomeIRef> !<SetTime(tnow+rate,head(toSend))>;
(*... other behaviour and recurse with FlowElement removed from toSend *)

endproc (* ProduceAction *)

Here flow elements are sent together with the current (local) time plus the rate at which the flow elements should be
produced.

ISO/IEC 10746-4:1998/Amd.1:2001 (E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

ISO/IEC 10746-4:1998/Amd.1:2001 (E)

ITU-T Rec. X.904/Amd.1 (2000 E) 7

Consumption of flow elements typically has different requirements placed upon it. The need to continually monitor the
time stamps of the incoming flow of information is of particular importance. A simple representation of the consumption
of an information flow may be represented by:

process ConsumeAction[g,...](myRef: IRef, recFlowElements: FlowElementSeq, tnow, rate: Nat...) :noexit:=
g ?<flowName: Name> !myRef ?<inFlowElement: FlowElement>;
(* check temporal requirements of inFlowElement are satisfied then *)
(* display FlowElement and recurse with time incremented *)
(* or recurse with FlowElement added to received FlowElements and time incremented *)

endproc (* ConsumeAction *)

A.1.1.6 Signal Interface

As there is no direct means in LOTOS to distinguish formally between a signal and any other LOTOS event, establishing
a given interface as being a signal interface is only possible informally by modelling the LOTOS events used to represent
signals differently to any other event. An example of how a signal interface signature might be modelled in LOTOS is
given in A.1.1.11.

A.1.1.7 Operational Interface

As there is no direct means in LOTOS to distinguish formally between an operation and any other LOTOS event,
establishing a given interface as being an operational interface is only possible informally by modelling the LOTOS
events used to represent operations differently to any other event. An example of how an operation interface signature
might be modelled in LOTOS is given in A.1.1.12.

A.1.1.8 Stream Interface

As there is no direct means in LOTOS to distinguish formally between a flow and any other LOTOS event, establishing a
given interface as being a stream interface is only possible informally by modelling the LOTOS events used to represent
flows differently to any other event. An example of how a stream interface signature might be modelled in LOTOS is
given in A.1.1.13.

A.1.1.9 Computational Object Template

In LOTOS a computational object template is represented by a process definition which has associated with it a set of
computational interface templates which the object can instantiate; a behaviour specification, i.e. a behaviour expression
that is not composed of events modelled as signal signatures, flow signatures or operation signatures. There should also
be some form of environmental contract modelled as part of the process definition, however, LOTOS does not possess
all of the necessary features to model environmental contracts fully. It may be possible to model some features in an
environmental contract through an Act One data type. This should be given as a formal parameter in the value parameter
list of the process definition.

A.1.1.10 Computational Interface Template

A signal interface template, a stream interface template or an operational interface template.

A.1.1.11 Signal Interface Signature

A signal interface signature is represented in LOTOS by a process definition, such that all event offers which require
synchronisation with the environment in order to occur are modelled as signal signatures. The occurrence of these event
offers result in a one-way communication from an initiating to a responding object. Structurally, a signal signature is
similar to an invocation for an announcement (or a termination associated with an interrogation), i.e. it consists of a name
(for the signal), a sequence of parameters associated with the signal and an indication of causality. Since all events in
LOTOS are atomic, there is no inherent distinction between events modelled as announcements or signals.

Signal interface signatures differ from operational interface signatures though in that they do not require that the
interface as a whole is given a causality. Instead, signal interface signatures may contain signals with either initiating or
responding causalities. From this we model a signal interface signature in LOTOS by:

process SignalIntSig[g...](myRef: IRef, known: IRefs...):noexit:=
g !<sigName> !<SomeIRef> !<pl>; ...(* other behaviour *)

[]... (* other initiating actions *)
[]
g ?<sigName: Name> !myRef ?<inArgs: PList>;

([not(makeOp(sigName,inArgs) IsIn getOps(myRef))] -> ...(* unsuccessful behaviour *)
[]
[makeOp(sigName,inArgs) IsIn getOps(myRef)] -> ...(* successful behaviour *))

[]... (* other responding actions *)
endproc (* SignalIntSig *)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

8 ITU-T Rec. X.904/Amd.1 (2000 E)

Here we state that a signal interface consists of a collection of event offers. These event offers may model either
outgoing signals, i.e. those event offers with ! prefixing the signal name and list of parameters, or incoming signals, i.e.
those event offers with ? prefixing the signal name and list of parameters. In the case of incoming signals, it is possible
to check that the incoming signal is one expected, i.e. the signal is in the set of allowed signals associated with that
interface reference.

NOTE – This specification fragment requires that the process is instantiated with at least one gate which corresponds to the
interaction point at which the interface exists. The process should also be instantiated with a set of interface references and its own
interface reference. We note here that it is not possible to write predicates on the signals sent. To do so would require a level of
prescriptivity that we do not have, e.g. ensuring that SomeIRef is an interface reference that exists in the set of known interface
references associated with the process. It is possible to perform checks on arriving signals though, i.e. the arriving signal should be
one of the signals associated with that interface reference.We also note that we have used the choice operator here to model the
composition of individual signals. It is quite possible to use several other composition operators here, e.g. interleaving. If
interleaving composition is used then multiple arriving signals can be received before any responding signals are sent. Since
interfaces usually have some form of existence, i.e. they offer operations that can be invoked more than one time, the comments
representing other behaviours are likely to contain recursive process instantiations. Through using the choice operator we have a
form of blocking of signals, i.e. should a signal arrive then it has to be responded to before any other signals can be accepted.
Similar arguments hold for all other processes representing computational interface signatures.

A.1.1.12 Operational Interface Signature

An operational interface signature is represented in LOTOS by a process definition, such that all event offers which
require synchronisation with the environment in order to occur are modelled as part of operation signatures. That is, they
all represent parts of either announcements or interrogations. We may model an operational interface signature for a
client through the following process definition.

process OpIntSigClient[g...](myRef: IRef, known: IRefs, ...):noexit:=
g !<invName> !<SomeIRef> !<inArgs>; ...(* other behaviour *)
[]... (* other announcements *)

[]
g !<invName> !<SomeIRef> !<inArgs> !<outArgs>; ...(* other behaviour *)

(g ?<termName: Name> !myRef ?<outArgs: PList>;
[not(makeOp(termName,outArgs) IsIn getOps(myRef))] -> ...(* return error message *)
[]
[makeOp(termName,outArgs) IsIn getOps(myRef)] -> ...(* other behaviour *)

[] ... (* other terminations *))
[] ... (* other interrogations *)

endproc (* OpIntSigClient *)

Here we state that a client interface signature consists of a collection of event offers. These event offers may model either
outgoing (announcement or interrogation) invocations, i.e. those event offers with ! prefixing the invocation name and
list of parameters, or incoming terminations, i.e. those event offers with ? prefixing the termination name and list of
parameters. In the case of incoming terminations, it is possible to check that the incoming termination is one expected,
i.e. the termination is in the set of allowed termination associated with that interface reference.

The Note in A.1.1.11 also applies to operational interface signatures with the appropriate modifications, e.g. replace
arriving signal by invocation.

Operational interfaces signatures for servers may be represented in LOTOS by:

process OpIntSigServer[g...](myRef: IRef, known: IRefs, ...):noexit:=
g ?<invName: Name> !myRef ?<inArgs: PList>;
([not(makeOp(invName,inArgs) IsIn getOps(myRef))] -> ...(* ignore/other behaviour *)
[]
[makeOp(invName,inArgs) IsIn getOps(myRef)] -> ...(* other behaviour *)
[]... (* other announcements *))

[]
g ?<invName: Name> !myRef ?<inArgs:PList> ?<outArgs:PList>; ...(* other behaviour *)
([not(makeOp(invName,inArgs,outArgs) IsIn getOps(myRef))] -> ...(* return error message *)
[]
[makeOp(invName,inArgs,outArgs) IsIn getOps(myRef)] -> ...(* other behaviour *)
g !<termName> !<SomeIref> !resList ; ...(* other behaviour *)
[] ... (* other terminations *))

[] ... (* other interrogations *))
endproc (* OpIntSigServer *)

As with client interface signatures, a server interface signature has a set of known interface references and a reference for
itself. This latter interface reference is used to ensure that the announcement or interrogation invocations the server
receives are those that were expected, i.e. they were in the set of operations associated with that interface reference. If
these invocations were not acceptable, e.g. the parameters were not correct or the operation requested was not available,
then error handling behaviours are taken. In the case of announcements this might result in a recursive call with the

ISO/IEC 10746-4:1998/Amd.1:2001 (E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10746-4:1998/Amd 1:2001
https://standards.iteh.ai/catalog/standards/sist/2316cf04-3348-494b-b97b-

8286613b93a2/iso-iec-10746-4-1998-amd-1-2001

	Q8É€æ"té�‰Ò0ˆÿeÁ�qh™¡Y…/£íÓÛ
˚��˘°�F¢Aä±ëÖYæQhìMAr¾ÿ˛Ç²´®±±M³±¿AÚ+OÉGåÀ��×”>«�
í¦±ØTìí0žÐ)��žŒ¾B⁄f�"^�9_˙T�<é’Eıý˙�Ä’’(TåŁÙﬂ¾��h‘Ñ

