INTERNATIONAL STANDARD

First edition 2000-04-15

Extenders for paints — Specifications and methods of test —

Part 18: Precipitated sodium aluminium silicate

iTeh Matières de charge pour peintures — Spécifications et méthodes d'essai — Partie 18: Silicoaluminate de sodium précipité (standards.iteh.ai)

<u>ISO 3262-18:2000</u> https://standards.iteh.ai/catalog/standards/sist/13fd4b72-fd1f-4d62-8128-851aa443d41d/iso-3262-18-2000

Reference number ISO 3262-18:2000(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 3262-18:2000</u> https://standards.iteh.ai/catalog/standards/sist/13fd4b72-fd1f-4d62-8128-851aa443d41d/iso-3262-18-2000

© ISO 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 734 10 79 E-mail copyright@iso.ch Web www.iso.ch Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 3262 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 3262-18 was prepared by Technical Committee ISO/TC 35, *Paints and varnishes*, Subcommittee SC 2, *Pigments and extenders*.

Together with the other parts (see below), this part of ISO 3262 cancels and replaces ISO 3262:1975, which has been technically revised. Part 1 comprises the definition of the term extender and a number of test methods that are applicable to most extenders, whilst part 2 and the following parts specify requirements and, where appropriate, particular test methods for individual extenders.

ISO 3262 consists of the following parts, under the general title Extenders for paints — Specifications and methods of test: https://standards.iteh.ai/catalog/standards/sist/13fd4b72-fd1f-4d62-8128-851aa443d41d/iso-3262-18-2000

- Part 1: Introduction and general test methods
- Part 2: Barytes (natural barium sulfate)
- Part 3: Blanc fixe
- Part 4: Whiting
- Part 5: Natural crystalline calcium carbonate
- Part 6: Precipitated calcium carbonate
- Part 7: Dolomite
- Part 8: Natural clay
- Part 9: Calcined clay
- Part 10: Natural talc/chlorite in lamellar form
- Part 11: Natural talc, in lamellar form, containing carbonates
- Part 12: Muscovite-type mica
- Part 13: Natural quartz (ground)

- Part 14: Cristobalite
- Part 15: Vitreous silica
- Part 16: Aluminium hydroxides
- Part 17: Precipitated calcium silicate
- Part 18: Precipitated sodium aluminium silicate
- Part 19: Precipitated silica
- Part 20: Fumed silica
- Part 21: Silica sand (unground natural quartz)
- Part 22: Flux-calcined kieselguhr

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 3262-18:2000</u> https://standards.iteh.ai/catalog/standards/sist/13fd4b72-fd1f-4d62-8128-851aa443d41d/iso-3262-18-2000

Extenders for paints — Specifications and methods of test —

Part 18: Precipitated sodium aluminium silicate

1 Scope

This part of ISO 3262 specifies requirements and corresponding methods of test for precipitated sodium aluminium silicate.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 3262. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 3262 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

(standards.iteh.ai) ISO 648:1977, Laboratory glassware — One-mark pipettes.

ISO 787-2:1981, General methods of test for pigments and extenders — Part 2: Determination of matter volatile at 105 °C. 851aa443d41d/iso-3262-18-2000

ISO 787-5:1980, General methods of test for pigments and extenders — Part 5: Determination of oil absorption value.

ISO 787-9:1981, General methods of test for pigments and extenders — Part 9: Determination of pH value of an aqueous suspension.

ISO 3262-1:1997, Extenders for paints — Specifications and methods of test — Part 1: Introduction and general test methods.

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods.

ISO 5794-1:1994, Rubber compounding ingredients — Silica, precipitated, hydrated — Part 1: Non-rubber tests.

ISO 15528:—¹), Paints, varnishes and raw materials for paints and varnishes — Sampling.

3 Term and definition

For the purposes of this part of ISO 3262, the following term and definition apply.

3.1

precipitated sodium aluminium silicate

amorphous silicate precipitated by reaction of sodium silicate solution with a mineral acid and/or an aluminium salt

¹⁾ To be published. (Revision of ISO 842:1984 and ISO 1512:1991)

4 Requirements and test methods

For precipitated sodium aluminium silicate complying with this part of ISO 3262, the essential requirements are specified in Table 1 and the conditional requirements are listed in Table 2.

	75	See clause 6 or 7
	3 to 10	See clause 7
% (<i>m/m</i>)		
	5 to 15	
% (<i>m/m</i>)	2	See clause 8
%	95	Test method in preparation
% (<i>m/m</i>)	10	ISO 787-2
% (<i>m/m</i>)	3 to 12	ISO 3262-1
g/100 g	70	ISO 787-5
_	7 to 12	ISO 787-9
	% % (m/m) % (m/m) g/100 g —	S (mm) 5 to 15 % (m/m) 2 % 95 % (m/m) 10 % (m/m) 3 to 12 g/100 g 70

Table 1 — Essential requirements

^a A test method with higher reproducibility and repeatability is described in ASTM D 2414-97, *Standard test method for carbon black* — *n-Dibutyl phthalate absorption number.* However, the results cannot be compared directly with oil absorption values determined in accordance with ISO 787-5.

ISO 3262-18:2000

https://standards.iteb.ai/catalog/standards/sist/13fd4b72-fd1f-4d62-8128-Table 25 Lag Conditional requirements

Characteristic	Unit	Requirement	Test method
Particle size distribution (instrumental method)	% (<i>m/m</i>)	To be agreed between the interested parties	To be agreed between the interested parties
Specific surface area	m²/g		ISO 5794-1:1994, annex D

5 Sampling

Take a representative sample of the product to be tested, as described in ISO 15528.

6 Determination of silica content

6.1 Principle

A test portion is repeatedly treated with hydrochloric acid and evaporated to dryness. To render the dehydrated silicic acid thus formed as insoluble as possible, it is then heated for 2 h at (140 ± 5) °C. Any chlorides present are removed by extracting the precipitate with hot dilute hydrochloric acid.

The precipitate is ignited at 1 000 °C, giving impure silicon dioxide, which is treated with sulfuric and hydrofluoric acid. The silicon tetrafluoride formed is evaporated off and the silica content is calculated from the resulting loss in mass.

6.2 Reagents

Use only reagents of recognized analytical grade and only water of at least grade 3 purity as defined in ISO 3696.

6.2.1 Hydrochloric acid, concentrated, approximately 32 % (m/m), $\rho \approx$ 1,16 g/ml.

6.2.2 Hydrochloric acid, diluted 1 + 1.

Add 1 part by volume of concentrated hydrochloric acid (6.2.1) to 1 part by volume of water.

6.2.3 Sulfuric acid, diluted 1 + 1.

Add 1 part by volume of concentrated sulfuric acid, approximately 96 % (m/m), $\rho \approx$ 1,84 g/ml, slowly to 1 part by volume of water.

6.2.4 Hydrofluoric acid, concentrated, approximately 40 % (m/m), $\rho \approx 1,13$ g/ml.

6.3 Apparatus

Use ordinary laboratory apparatus and glassware, together with the following:

6.3.1 Dish.

- 6.3.2 Platinum crucible.
- iTeh STANDARD PREVIEW
- 6.3.3 Water bath, capable of being maintained at 100 °C. (standards.iteh.ai)
- 6.3.4 Infrared evaporator.
- 6.3.5 Muffle furnace, capable of being maintained at (1000 ± 20) °C_{2-fd1f-4d62-8128-}
- 851aa443d41d/iso-3262-18-2000
- **6.3.6** Drying oven, capable of being maintained at (140 ± 5) °C.

6.3.7 Filter paper.

The filter paper used for filtration of the silica shall be of such texture as to retain the smallest particles of precipitate and nevertheless permit rapid filtration.²⁾

6.3.8 Desiccator, containing magnesium perchlorate as desiccant.

6.4 Procedure

6.4.1 Number of determinations

Carry out the determination in duplicate.

6.4.2 Test portion

Weigh, to the nearest 0,2 mg, approximately 1 g (m_0) of the sample (see clause 5) into a dish (6.3.1).

²⁾ For example Whatman No. 40 or 41 or Schleicher und Schüll No. 589/2 "Weißband".

6.4.3 Determination

Add slowly 20 ml of concentrated hydrochloric acid (6.2.1) and evaporate to dryness under the infrared evaporator (6.3.4). Add again 20 ml of concentrated hydrochloric acid and evaporate to dryness. Repeat this step once more. After the third evaporation, place the dish in the drying oven (6.3.6), maintained at (140 ± 5) °C, and leave for 2 h.

Remove the dish from the oven and allow to cool. Add 50 ml of 1 + 1 hydrochloric acid (6.2.2) to the residue in the dish and warm it for approximately 20 min on the water bath (6.3.3) at 100 °C. Filter through a suitable filter paper (6.3.7) and wash the residue on the filter with hot water until the washings are neutral.

Pour the filtrate and washings into the original dish and evaporate to dryness. Repeat this evaporation step another two times, adding each time 10 ml of concentrated hydrochloric acid to the residue. After the third evaporation, heat at (140 ± 5) °C for 2 h in the drying oven.

Add 20 ml of 1 + 1 hydrochloric acid to the residue in the dish and warm it for approximately 10 min on the water bath at 100 °C. Filter through a fresh filter paper and wash the residue on the filter with hot water until the washings are neutral.

If it is felt necessary, check the filtrate for any silicon which may have passed through the filter.

Place the two filter papers with the washed precipitates in the platinum crucible (6.3.2). Dry, char at low temperature, ignite in the muffle furnace (6.3.5) at (1000 ± 20) °C to constant mass (this should take approximately 1 h) and allow to cool in the desiccator (6.3.8). Weigh the ignited precipitate to the nearest 0,2 mg (m_1).

Wet the ignited precipitate in the platinum crucible with 2 mb to 3 ml of water, add 1 ml of 1 + 1 sulfuric acid (6.2.3) and 15 ml of hydrofluoric acid (6.2.4) and evaporate to a syrup, taking care to avoid loss by spitting. Allow to cool and wash the sides down with small quantities of water. Then add a further 10 ml of hydrofluoric acid and evaporate to dryness. If the evaporation of the silicon tetrafluoride is not complete, add a further 10 ml of hydrofluoric acid and of hydrofluoric acid and evaporate to dryness again.

ISO 3262-18:2000

Heat the residue until white fumes are ino ilonger/sevolved, is the hubble for 30 min - in the muffle furnace at (1000 ± 20) °C. Remove from the furnace, allow to 4000 in the desiccator and weigh to the nearest 0,2 mg (m_2).

6.4.4 Determination of the total loss on ignition

Weigh, to the nearest 0,2 mg, approximately 1 g (m_3) of the sample (see clause 5) into a platinum crucible.

NOTE Weighing out the test portions for the determination of the silica content (see 6.4.2) and the total loss on ignition may be carried out at the same time.

Ignite the test portion to constant mass in the muffle furnace at (1000 ± 20) °C (this should take approximately 2 h) and allow to cool in the desiccator. Weigh the ignited test portion to the nearest 0,2 mg (m_4).

Calculate the total loss on ignition w(TLI), expressed as a percentage by mass, using the equation

$$w(\text{TLI}) = \frac{m_3 - m_4}{m_3} \times 100$$

where

 m_3 is the mass, in grams, of the test portion before ignition;

 m_{Δ} is the mass, in grams, of the ignited test portion.

Calculate the mean of the two determinations and report the result to the nearest 0,1 %.

6.5 Expression of results

Calculate the silica content $w(SiO_2)$, expressed as a percentage by mass, using the equation

$$w(SiO_2) = \frac{(m_1 - m_2)}{m_0 \times \left[1 - \frac{w(TLI)}{100}\right]} \times 100$$

where

- m_0 is the mass, in grams, of the test portion (see 6.4.2);
- m_1 is the mass, in grams, of the dehydrated impure silica after ignition at (1000 ± 20) °C to constant mass (see 6.4.3);
- m_2 is the mass, in grams, of the silica after treatment with hydrofluoric acid and ignition to constant mass (see 6.4.3);
- w(TLI) is the total loss on ignition determined in 6.4.4.

Calculate the mean of the two determinations and report the result to the nearest 0,1 %.

6.6 Precision

6.6.1 Repeatability *r* **iTeh STANDARD PREVIEW**

The repeatability *r* is the value below which the absolute difference between two single test results, each the mean of duplicates, can be expected to lie when this method is used under repeatability conditions. In this case, the test results are obtained on identical material by one operator in one laboratory within a short interval of time. For this part of ISO 3262, *r* is 0,6 %, with a 95 %, probability, standards/sist/13fd4b72-fd1f-4d62-8128-

851aa443d41d/iso-3262-18-2000

6.6.2 Reproducibility R

No reproducibility data are currently available.

7 Determination of the composition by spectrometry

7.1 Principle

This spectrometric method gives the aluminium oxide and sodium oxide contents as well as the aluminium silicate content although the precision of the determination of the aluminium silicate content may be lower than that of the method described in clause 6.

The elements aluminium, sodium and silicon are analysed using either flame atomic absorption spectrometry (FAAS) or inductively coupled plasma atomic emission spectrometry (ICP-AES), depending on which type of instrument is available in the laboratory.

The test solution is prepared by fusing a test portion of precipitated sodium aluminium silicate with lithium metaborate and dissolving the melt in a mixture of nitric acid and tartaric acid.

NOTE The advantages of the ICP-AES method include its wide dynamic range and multi-element capabilities. Both methods (FAAS and ICP-AES) are relative analytical techniques. For quantitative analytical results, both measurement techniques must be calibrated using standard matching solutions.