

Designation: E 29 – $02^{\epsilon 1}$

Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications¹

This standard is issued under the fixed designation E 29; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

 ϵ^1 Note—Editorial changes were made to Footnote 4, Table 1, and Paragraph 7.4 in November 2003.

1. Scope

1.1 This practice is intended to assist the various technical committees in the use of uniform methods of indicating the number of digits which are to be considered significant in specification limits, for example, specified maximum values and specified minimum values. Its aim is to outline methods which should aid in clarifying the intended meaning of specification limits with which observed values or calculated test results are compared in determining conformance with specifications.

1.2 This practice is intended to be used in determining conformance with specifications when the applicable ASTM specifications or standards make direct reference to this practice.

1.3 Reference to this practice is valid only when a choice of method has been indicated, that is, either *absolute method or rounding method*.

2. Referenced Documents

2.1 ASTM Standards:

SI 10 Standard for Use of the International System of Units (SI) (the Modernized Metric System)³

3. Terminology

3.1 significant digit, n—any of the figures 0 through 9, excepting leading zeros and some trailing zeros, which is used with its place value to denote a numerical quantity to some desired approximation.

3.1.1 The digit zero may either indicate a specific value or indicate place only. Zeros leading the first nonzero digit of a number indicate order of magnitude only and are not significant digits. For example, the number 0.0034 has two significant

digits. Zeros trailing the last nonzero digit for numbers represented with a decimal point are significant digits. For example, the numbers 1270. and 32.00 each have four significant digits. The significance of trailing zeros for numbers represented without use of a decimal point can only be identified from knowledge of the source of the value. For example, a modulus strength, stated as 140 000 Pa, may have as few as two or as many as six significant digits.

3.1.2 To eliminate ambiguity, the exponential notation may be used. Thus, 1.40×10^5 indicates that the modulus is reported to the nearest 0.01×10^5 or 1000 Pa.

3.1.3 Use of appropriate SI prefixes is recommended for metric units to reduce the need for trailing zeros of uncertain significance. Thus, 140 kPa and 0.140 MPa each indicate that the modulus is reported to the nearest 1 kPa or 1000 Pa, while 140 kPa may again have two or three significant digits.

4. Significance and Use

4.1 This practice describes two commonly accepted methods of rounding data, identified as the Absolute Method and the Rounding Method. In the applications of this practice to a specific material or materials it is essential to specify which method is intended to apply. In the absence of such specification, reference to this practice, which expresses no preference as to which method should apply, would be meaningless. The choice of method is arbitrary depending upon the current practice of the particular branch of industry or technology concerned, and should therefore be specified in the prime publication.

4.1.1 The unqualified statement of a numerical limit, such as "2.50 in. max," cannot, in view of different established practices and customs, be regarded as carrying a definite operational meaning concerning the number of digits to be retained in an observed or a calculated value for purposes of determining conformance with specifications.

4.1.2 *Absolute Method*—In some fields, specification limits of 2.5 in. max, 2.50 in. max, and 2.500 in. max are all taken to imply the same absolute limit of exactly two and a half inches

E 456 Terminology Relating to Quality and Statistics²

¹ This practice is under the jurisdiction of ASTM Committee E11 on Quality and Statistics and is the direct responsibility of Subcommittee E11.30 on Data Analysis. Current edition approved May 10, 2002. Published July 2002. Originally

published as E 29 – 40. Last previous edition E 29 – 93 (1999).

² Annual Book of ASTM Standards, Vol 14.02.

³ Annual Book of ASTM Standards, Vol 14.04.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

and for purposes of determining conformance with specifications, an observed value or a calculated value is to be compared directly with the specified limit. Thus, any deviation, however small, outside the specification limit signifies nonconformance with the specifications. This will be referred to as the absolute *method*, which is discussed in 5.

4.1.3 Rounding Method—In other fields, specification limits of 2.5 in. max, 2.50 in. max, 2.500 in. max are taken to imply that, for the purposes of determining conformance with specifications, an observed value or a calculated value should be rounded to the nearest 0.1 in., 0.01 in., 0.001 in., respectively, and then compared with the specification limit. This will be referred to as the *rounding method*, which is discussed in 6.

4.2 Section 7 of this practice gives guidelines for use in recording, calculating, and reporting the final result for test data.

5. Absolute Method

5.1 Where Applicable—The absolute method applies where it is the intent that all digits in an observed value or a calculated value are to be considered significant for purposes of determining conformance with specifications. Under these conditions, the specified limits are referred to as absolute limits.

5.2 How Applied—With the absolute method, an observed value or a calculated value is not to be rounded, but is to be compared directly with the specified limiting value. Conformance or nonconformance with the specification is based on this comparison.

5.3 How Expressed—This intent may be expressed in the standard in one of the following forms:

5.3.1 If the absolute method is to apply to all specified limits in the standard, this may be indicated by including the following sentence in the standard:

For purposes of determining conformance with these specifications, all specified limits in this standard are absolute limits, as defined in ASTM Practice E 29, for Using Significant Digits in Test Data to Determine Conformance with Specifications.

5.3.2 If the absolute method is to apply to all specified limits of some general type in the standard (such as dimensional tolerance limits), this may be indicated by including the following sentence in the standard:

For purposes of determining conformance with these specifications, all specified (dimensional tolerance) limits are absolute limits, as defined in ASTM Practice E 29, Using Significant Digits in Test Data to Determine Conformance with Specifications.

5.3.3 If the absolute method is to apply to all specified limits given in a table, this may be indicated by including a footnote with the table as follows:

Capacity mL	$\begin{array}{c} \text{Volumetric Tolerance}^{\mathcal{A}} \\ \pm \ \text{mL} \end{array}$	
10	0.02	
25	0.03	
50	0.05	
100	0.10	

^A Tolerance limits specified are absolute limits as defined in ASTM Practice E 29, for Using Significant Digits in Test Data to Determine Conformance with Specifications.

6. Rounding Method

6.1 Where Applicable—The rounding method applies where it is the intent that a limited number of digits in an observed value or a calculated value are to be considered significant for purposes of determining conformance with specifications.

6.2 How Applied—With the rounding method, an observed value or a calculated value should be rounded by the procedure prescribed in 4.2 to the nearest unit in the designated place of figures stated in the standard, as, for example, "to the nearest kPa," "to the nearest 10 ohms," "to the nearest 0.1 percent," etc. The rounded value should then be compared with the specified limit, and conformance or nonconformance with the specification based on this comparison.

6.3 How Expressed—This intent may be expressed in the standard in one of the following forms:

6.3.1 If the rounding method is to apply to all specified limits in the standard, and if all digits expressed in the specification limit are to be considered significant, this may be indicated by including the following statement in the standard:

The following applies to all specified limits in this standard: For purposes of determining conformance with these specifications, an observed value or a calculated value shall be rounded "to the nearest unit" in the last right-hand digit used in expressing the specification limit, in accordance with the rounding method of ASTM Practice E 29, for Using Significant Digits in Test Data to Determine Conformance with Specifications.

6.3.2 If the rounding method is to apply only to the specified limits for certain selected requirements, this may be indicated by including the following statement in the standard:

The following applies to specified limits for requirements on (tensile strength), (elongation), and (\dots) given in \dots , (applicable section number and title) and (...) of this standard: For purposes of determining conformance with these specifications, an observed value or a calculated value shall be rounded to the nearest 1kPa for (tensile strength), to the nearest (1 percent) for (elongation), and to the nearest (\dots) for (\dots) in accordance with the rounding-off method of ASTM Practice E 29 Using Significant Digits in Test Data to Determine Conformance with Specifications.

6.3.3 If the rounding method is to apply to all specified limits in a table, this may be indicated by a note in the manner shown in the following examples:

6.3.3.1 *Example 1*—Same significant digits for all items:

	Chemical Composition, % mass
Copper	4.5 ± 0.5
Iron	1.0 max
Silicon	2.5 ± 0.5
Other constituents (magnesium + zinc + manganese) Aluminum	0.5 max remainder

NOTE 1-For purposes of determining conformance with these specifications, an observed value or a calculated value shall be rounded to the nearest 0.1 percent, in accordance with the rounding method of ASTM Practice E 29, for Using Significant Digits in Test Data to Determine Conformance with Specifications.

6.3.3.2 *Example 2*—Significant digits not the same for all items; similar requirements:

	Chemical Composition, % mass	
	min	max
Nickel	57	
Chromium	14	18
Manganese		3
Silicon		0.40
Carbon		0.25
Sulfur		0.03