INTERNATIONAL STANDARD

ISO 418

Third edition 2001-12-15

Photography — Processing chemicals — Specifications for anhydrous sodium sulfite

Photographie — Produits chimiques de traitement — Spécifications relatives au sulfite de sodium anhydre

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 418:2001 https://standards.iteh.ai/catalog/standards/sist/dd563822-312b-4e3c-a9b2-c3551dd4f3f2/iso-418-2001

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 418:2001 https://standards.iteh.ai/catalog/standards/sist/dd563822-312b-4e3c-a9b2c3551dd4f3f2/iso-418-2001

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Contents Page Foreword......iv 1 Scope1 2 3 General......1 3.1 Physical properties......1 3.2 Hazardous properties......1 3.3 Storage......1 4 5 6 7 Assay 11eh STANDARD PREVIEW 2 7.1 Mass fraction of insoluble matter (as a precipitate of calcium, magnesium and ammonium 7.2 7.3 Mass fraction of heavy metals5 Mass fraction of iron //standards.iteh.ai/catalog/standards/sist/dd563822-312b-4e3c-a9b2-c3551dd4f3f2/iso-418-2001 7.4 7.5 **Alkalinity** (as Na₂CO₃)......**5** 7.6 Reaction to ammoniacal silver nitrate......6 7.7 Appearance of solution......7 7.8

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 418 was prepared by Technical Committee ISO/TC 42, Photography.

This third edition cancels and replaces the second edition (ISO 418:1994), of which it constitutes a technical revision.

(standards.iteh.ai)

ISO 418:2001 https://standards.iteh.ai/catalog/standards/sist/dd563822-312b-4e3c-a9b2-c3551dd4f3f2/iso-418-2001

Introduction

This International Standard is one of a series that establishes criteria of purity for chemicals used in processing photographic materials. General test methods and procedures cited in this International Standard are compiled in ISO 10349-1.

This International Standard is intended for use by individuals with a working knowledge of analytical techniques, which may not always be the case. Some of the procedures utilize caustic, toxic, or otherwise hazardous chemicals. Safe laboratory practice for the handling of chemicals requires the use of safety glasses or goggles and, in some cases, other protective apparel such as rubber gloves, face masks or aprons. Normal precautions for the safe performance of any chemical procedure shall be exercised at all times, but specific details have been provided for hazardous materials. Hazard warnings designated by a letter enclosed in angle brackets, $\langle \ \rangle$, are used as a reminder in those steps detailing handling operations and are defined in ISO 10349-1. More detailed information regarding hazards, handling and use of these chemicals may be available from the manufacturer.

This International Standard provides chemical and physical requirements for the suitability of a photographic-grade chemical. The tests correlate with undesirable photographic effects. Purity requirements are set as low as possible consistent with these photographic effects. These criteria are considered to be the minimum requirements necessary to assure sufficient purity for use in photographic processing solutions, except that if the purity of a commonly available grade of chemical exceeds photographic processing requirements and if there is no economic penalty in its use, the purity requirements have been set to take advantage of the availability of the higher-quality material.

Every effort has been made to keep the number of requirements to a minimum. Inert impurities are limited to amounts that will not unduly reduce the assay. All tests are performed on samples "as received" to reflect the condition of materials furnished for use. Although the ultimate criterion for suitability of such a chemical is its successful performance in an appropriate use test, the shorter, more economical test methods described in this International Standard are generally adequate. 551dd41312/iso-418-2001

Assay procedures have been included in all cases where a satisfactory method is available. An effective assay requirement serves not only as a safeguard of chemical purity, but also as a valuable complement to the identity test. Identity tests have been included whenever a possibility exists that another chemical or mixture of chemicals could pass the other tests.

All requirements listed in clause 4 are mandatory. The physical appearance of the material and any footnotes are for general information only and are not part of the requirements.

Efforts have been made to employ tests that are capable of being run in any normally equipped laboratory and, whenever possible, to avoid tests that require highly specialized equipment or techniques. Instrumental methods have been specified only as alternative methods or alone in those cases where no other satisfactory method is available.

Over the past few years, great improvements have been made in instrumentation for various analyses. Where such techniques have equivalent or greater precision, they may be used in place of the tests described in this International Standard. Correlation of such alternative procedures with the given method is the responsibility of the user. In case of disagreement in results, the method called for in the specification shall prevail. Where a requirement states "to pass test", however, alternative methods shall not be used.

© ISO 2001 – All rights reserved

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 418:2001 https://standards.iteh.ai/catalog/standards/sist/dd563822-312b-4e3c-a9b2-c3551dd4f3f2/iso-418-2001

Photography — Processing chemicals — Specifications for anhydrous sodium sulfite

1 Scope

This International Standard establishes criteria for the purity of photographic-grade anhydrous sodium sulfite and specifies the tests to be used to determine the purity.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 10349-1:1992, Photography — Photographic-grade chemicals — Test methods — Part 1: General.

ISO 10349-3:1992, Photography — Photographic_grade_chemicals — Test methods — Part 3: Determination of matter insoluble in ammonium hydroxide solution of standards/sist/dd563822-312b-4e3c-a9b2-

c3551dd4f3f2/iso-418-2001

ISO 10349-5:1992, Photography — Photographic-grade chemicals — Test methods — Part 5: Determination of heavy metals and iron content.

ISO 10349-7:1992, Photography — Photographic-grade chemicals — Test methods — Part 7: Determination of alkalinity or acidity.

ISO 10349-9:1992, Photography — Photographic-grade chemicals — Test methods — Part 9: Reaction to ammoniacal silver nitrate.

3 General

3.1 Physical properties

Anhydrous sodium sulfite (Na₂SO₃) is a white granular powder. It has a relative molecular mass of 126,04.

3.2 Hazardous properties

Anhydrous sodium sulfite is not hazardous when handled with normal precautions. Avoid contact with acids.

3.3 Storage

Anhydrous sodium sulfite shall be stored in a closed container at room temperature.

© ISO 2001 – All rights reserved

Requirements

A summary of the requirements is shown in Table 1.

Table 1 — Summary of requirements

Test	Limit	Subclause	International Standard in which test method is given
Assay	Minimum: 97,0 %	7.1	ISO 418
Insoluble matter (as precipitate of calcium, magnesium and ammonium hydroxides)	Maximum: 0,5 %	7.2	ISO 10349-3
Mass fraction of heavy metals (as Pb)	Maximum: 0,002 %	7.3	ISO 10349-5
Mass fraction of iron (Fe)	Maximum: 0,005 %	7.4	ISO 10349-5
Alkalinity (as Na ₂ CO ₃)	Maximum: 0,15 %	7.5	ISO 10349-7
Reaction to ammoniacal silver nitrate	To pass test	7.6	ISO 10349-9
Mass fraction of thiosulfate (as Na ₂ S ₂ O ₃)	Maximum: 0,03 %	7.7 REVIE X	ISO 418 V
Appearance of solution	Clear and free from insoluble matter except for a slight flocculence	.7.8 .a1)	ISO 418

ISO 418:2001

https://standards.iteh.ai/catalog/standards/sist/dd563822-312b-4e3c-a9b2-

c3551dd4f3f2/iso-418-2001

All reagents, materials and glassware shall conform to the requirements specified in ISO 10349-1 unless otherwise noted. The hazard warning symbols, used as a reminder in those steps detailing handling operations, are defined in ISO 10349-1. These symbols are used to provide information to the user and are not meant to provide conformance with hazardous labelling requirements, as these vary from country to country.

Sampling

See ISO 10349-1.

Test methods

Assay

7.1.1 Specification

The minimum mass fraction of anhydrous sodium sulfite shall be 97,0 %.

7.1.2 Reagents

- **7.1.2.1** Hydrochloric acid, HCl, $\rho \approx 1,18$ g/ml (DANGER: $\langle B \rangle \langle C \rangle$)¹).
- 7.1.2.2 Potassium iodide, Kl.
- **7.1.2.3 lodine**, $c(l_2) = 0.05 \text{ mol/l } (12.7 \text{ g/l})^{2/3}$.

Weigh, to the nearest 0,001 g, 12,7 g of freshly sublimed iodine (DANGER: $\langle C \rangle \langle O \rangle$) into a tared weighing flask. Add 36 g of potassium iodide (7.1.2.2) and 100 ml of water. After solution is complete, add three drops of hydrochloric acid (7.1.2.1) (DANGER: $\langle B \rangle \langle C \rangle$), and dilute to 1 litre at 20 °C in a volumetric flask. From the mass of iodine, m, calculate the concentration, c, in moles per litre, from

$$c(I_2) = \frac{m}{254}$$

7.1.2.4 Sodium thiosulfate, $c(Na_2S_2O_3) = 0,100 \text{ mol/l } (15,8 \text{ g/l})^2)$.

NOTE This solution is not required for the direct-titration method (7.1.4.2).

7.1.2.5 Salicylic acid, $c(HOC_6H_4COOH) = 1 \% (10 g/l)$.

7.1.2.6 Starch indicator, 5 g/l solution.

iTeh STANDARD PREVIEW

Stir 5 g of soluble starch into 100 ml of 1 % salicylic acid solution (7.1.2.5). Add 300 ml to 400 ml of boiling water. Boil until the starch dissolves and dilute to 1 litre with water. 1101.21)

7.1.3 Apparatus

ISO 418:2001

https://standards.iteh.ai/catalog/standards/sist/dd563822-312b-4e3c-a9b2-

- **7.1.3.1 Burette**, of capacity 50 ml. c3551dd4f3f2/iso-418-2001
- **7.1.3.2** Pipette, of capacity 50 ml.
- **7.1.3.3** Magnetic stirrer and bar, for the direct-titration method (7.1.4.2).

7.1.4 Procedure

Use either the back-titration method (7.1.4.1) or the direct-titration method (7.1.4.2).

7.1.4.1 Back-titration method

Using a pipette (7.1.3.2), transfer 50,00 ml of the iodine solution (7.1.2.3) to a glass-stoppered flask. Weigh, to the nearest 0,000 1 g, a test portion of about 0,25 g and wash this into the flask. Add 5 ml of the hydrochloric acid (7.1.2.1) (DANGER: $\langle B \rangle \langle C \rangle$) and using a burette (7.1.3.1) titrate with the sodium thiosulfate solution (7.1.2.4), adding 2 ml of the starch indicator (7.1.2.6) just before the endpoint.

© ISO 2001 – All rights reserved

¹⁾ Hazard warning codes are defined in ISO 10349-1.

²⁾ Commercially available analysed reagent solution is recommended. If the solution is to be prepared, see any quantitative analytical chemistry test.

³⁾ It is recommended that self-prepared iodine solutions be standardized before use.