INTERNATIONAL STANDARD

First edition 2002-03-15

Practice for use of a radiochromic liquid dosimetry system

Pratique de l'utilisation d'un système dosimétrique iTeh Sadiochromique liquide REVIEW (standards.iteh.ai)

ISO/ASTM 51540:2002 https://standards.iteh.ai/catalog/standards/sist/68d80ede-f0d8-4f05-842a-0e80ad4cbee0/iso-astm-51540-2002

Reference number ISO/ASTM 51540:2002(E)

© ISO/ASTM International 2002

ISO/ASTM 51540:2002(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central Secretariat nor ASTM International accepts any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and ASTM members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or ASTM International at the addresses given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/ASTM 51540:2002 https://standards.iteh.ai/catalog/standards/sist/68d80ede-f0d8-4f05-842a-0e80ad4cbee0/iso-astm-51540-2002

© ISO/ASTM International 2002

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. In the United States, such requests should be sent to ASTM International.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. +41 22 749 01 11 Fax +41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA Tel. +610 832 9634 Fax +610 832 9635 E-mail khooper@astm.org Web www.astm.org

Printed in the United States

Contents

Page

https://standards.iteh.ai/catalog/standards/sist/68d80ede-f0d8-4f05-842a-0e80ad4cbee0/iso-astm-51540-2002

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

ASTM International is one of the world's largest voluntary standards development organizations with global participation from affected stakeholders. ASTM technical committees follow rigorous due process balloting procedures.

A pilot project between ISO and ASTM International has been formed to develop and maintain a group of ISO/ASTM radiation processing dosimetry standards. Under this pilot project, ASTM Subcommittee E10.01, Dosimetry for Radiation Processing, is responsible for the development and maintenance of these dosimetry standards with unrestricted participation and input from appropriate ISO member bodies.

Attention is drawn to the possibility that some of the elements of this international standard may be the subject of patent rights. Neither ISO nor ASTM international shall be held responsible for identifying any or all such patent rights.

International Standard ISO/ASTM 51540 was developed by ASTM Committee E10, Nuclear Technology and Applications, through Subcommittee E10.01, and by Technical Committee ISO/TC 85, Nuclear Energy.

ISO/ASTM 51540:2002(E)

Standard Practice for Use of a Radiochromic Liquid Dosimetry System¹

This standard is issued under the fixed designation ISO/ASTM 51540; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision.

1. Scope

1.1 This practice covers the preparation, handling, testing, and procedure for using radiochromic liquid dosimetry systems of radiochromic dye solutions held in sealed or capped containers (for example, ampoules, vials). It also covers the use of spectrophotometric or photometric readout equipment for measuring absorbed dose in materials irradiated by photons and electrons.

1.2 This practice applies to radiochromic liquid dosimeter solutions that can be used within part or all of the specified ranges as follows:

1.2.1 The absorbed dose range is from 0.5 to 40 000 Gy for photons and electrons.

1.2.2 The absorbed dose rate is from 10^{-3} to 10^{11} Gv/s.

E 958 Practice for Measuring Practical Spectral Bandwidth 1.2.3 The radiation energy range for photons is from 0.01 to of Ultraviolet-Visible Spectrophotometers⁶ 20 MeV.

1.2.4 The radiation energy range for electrons is from 0.01 E 1026 Practice for Using the Fricke Reference Standard Dosimetry System⁴ to 20 MeV.

NOTE 1-Since electrons with energies less than 0.01 MeV may not 5154051204 Practice for Dosimetry in Gamma Irradiation Facilipenetrate the container of the solution, the solutions may be stirred in an

-astm-51205_Practice for Use of a Ceric-Cerous Sulfate Dosimetry 1.2.5 The irradiation temperature range is from -40 to System⁴ +60°C.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- C 912 Practice for Designing a Process for Cleaning Technical Glasses³
- E 170 Terminology Relating to Radiation Measurements and Dosimetry⁴

- E 177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods⁵
- E 178 Practice for Dealing with Outlying Observations⁵
- E 275 Practice for Describing and Measuring Performance of Ultraviolet, Visible, and Near Infrared Spectrophotometers⁶
- E 456 Terminology Relating to Quality and Statistics⁵
- E 666 Practice for Calculating Absorbed Dose from Gamma or X Radiation⁴
- E 668 Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices⁴
- E 925 Practice for the Calibration of Narrow Band-Pass Spectrophotometers⁶
- 2.2 ISO/ASTM Standards:
- open beaker with the electrons entering the solutions the solution and the solutions the solution and the solutions the solution and the solutions the solut
 - - 51261 Guide for Selection and Calibration of Dosimetry Systems for Radiation Processing⁴
 - 51275 Practice for Use of a Radiochromic Film Dosimetry System⁴
 - 51276 Practice for Use of a Polymethylmethacrylate Dosimetry System⁴
 - 51310 Practice for Use of a Radiochromic Optical Waveguide Dosimetry System⁴
 - 51400 Practice for Characterization and Performance of a High-Dose Gamma Radiation Dosimetry Calibration Laboratorv⁴
 - 51401 Practice for Use of a Dichromate Dosimetry System⁴
 - 51431 Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing⁴
 - 51607 Practice for Use of the Alanine-EPR Dosimetry System⁴
 - 51707 Guide for Estimating Uncertainties in Dosimetry for Radiation Processing⁴

2.3 International Commission on Radiation Units and Measurements (ICRU) Reports:⁷

¹ This practice is under the jurisdiction of ASTM Committee E10 on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.01 on Dosimetry for Radiation Processing, and is also under the jurisdiction of ISO/TC 85/WG 3

Current edition approved Jan. 22, 2002. Published March 15, 2002. Originally published as E1540-93. Last previous ASTM edition E1540-98^{€1}. ASTM E 1540-93 was adopted by ISO in 1998 with the intermediate designation ISO 15565:1998(E). The present International Standard ISO/ASTM 51540:2002(E) is a revision of ISO 15565.

² The boldface numbers in parentheses refer to the bibliography at the end of this practice.

³ Annual Book of ASTM Standards, Vol 15.02.

⁴ Annual Book of ASTM Standards, Vol 12.02.

⁵ Annual Book of ASTM Standards, Vol 14.02.

⁶ Annual Book of ASTM Standards, Vol 03.06.

⁷ Available from the International Commission on Radiation Units and Measurements, 7910 Woodmont Ave., Suite 800, Bethesda, MD 20814, U.S.A.

- ICRU Report 14 Radiation Dosimetry: X-Rays and Gamma Rays with Maximum Photon Energies Between 0.6 and 50 MeV
- ICRU Report 17 Radiation Dosimetry: X-Rays Generated at Potentials of 5 to 150 kV

ICRU Report 34 The Dosimetry of Pulsed Radiation

- ICRU Report 35 Radiation Dosimetry: Electron Beams with Energies between 1 and 50 MeV
- ICRU Report 37 Stopping Powers for Electrons and Photons
- ICRU Report 44 Tissue Substitutes in Radiation Dosimetry and Measurement

ICRU Report 60 Radiation Quantities and Units

3. Terminology

3.1 Definitions:

3.1.1 *absorbance bandwidth*—spectral band used in a photometric instrument, such as a densitometer, for the measurement of optical absorbance or reflectance.

3.1.2 *analysis wavelength*—wavelength used in a spectrophotometric instrument for the measurement of optical absorbance.

3.1.3 *calibration curve*—graphical representation of the dosimetry system's response function.

3.1.4 *dosimeter batch*—quantity of dosimeters made from a specific mass of material with uniform composition, fabricated in a single production run under controlled, consistent conditions and having a unique identification code.

3.1.5 dosimetry system—a system used for determining subsorbed dose, consisting of dosimeters, measurement instruments and their associated reference standards, ich avcatalog/standards, ich avca

3.1.6 *measurement quality assurance plan*—a documented program for the measurement process that ensures on a continuing basis that the overall uncertainty meets the requirements of the specific application. This plan requires traceability to, and consistency with, nationally or internationally recognized standards.

3.1.7 molar linear absorption coefficient (ϵ_m)—a constant relating the spectrophotometric absorbance, A_{λ} , of an optically absorbing molecular species at a given wavelength, λ , per unit pathlength, *d*, to the molar concentration, *c*, of that species in solution (2-4): $\epsilon_m = A_{\lambda}(d \times c)$. SI Unit: m² mol⁻¹.

3.1.8 *net absorbance*, ΔA —change in measured optical absorbance at a selected wavelength determined as the absolute difference between the pre-irradiation absorbance, A_0 , and the post-irradiation absorbance, A, as follows (2, 3): $\Delta A = |A - A_0|$.

3.1.9 *radiochromic liquid dosimeter*—specially prepared solution containing ingredients that undergo change in optical absorbance under ionizing radiation. This change in optical absorbance can be related to absorbed dose in water.

3.1.10 *response function*—mathematical representation of the relationship between dosimeter response and absorbed dose for a given dosimetry system.

3.1.11 specific net absorbance (Δk) —Net absorbance, ΔA , at a selected wavelength divided by the optical pathlength, *d*, through the dosimeter material as follows: $\Delta k = \Delta A/d$.

3.2 Definitions of other terms used in this standard that

pertain to radiation measurement and dosimetry may be found in ASTM Terminology E 170. Definitions in ASTM E 170 are compatible with ICRU 60; that document, therefore, may be used as an alternative reference.

4. Significance and Use

4.1 The radiochromic liquid dosimetry system provides a means of measuring absorbed dose in materials (5-7). Under the influence of ionizing radiation, chemical reactions take place in the radiochromic solution modifying the amplitudes of optical absorption bands (8-10). Absorbance values are measured at the selected wavelength(s) within these affected absorption bands (see also ISO/ASTM Guide 51261, and ISO/ASTM Practices 51205, 51275, 51276, 51310, 51400, and 51401).

4.2 In the use of a specific dosimetry system, a calibration curve or response function relates the dosimeter's response to an absorbed dose traceable to a nationally or internationally recognized standard (**11**, **12**).

4.3 The absorbed dose that is measured is usually specified in water. Absorbed dose in other materials may be evaluated by applying the conversion factors discussed in ISO/ASTM Guide 51261.

Nore 2—For a comprehensive discussion of various dosimetry methods applicable to the radiation types and energies discussed in this practice, see ICRU Reports 14, 17, 34, 35, and 37.

4.4 These dosimetry systems may be used in the industrial radiation processing of a variety of products, for example the sterilization of medical devices and radiation processing of research (5, 7, 13).

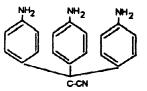
astr4.5¹The available dynamic range indicated in 1.2.1 is achieved by using a variety of radiochromic leuco dyes (Table 1) in a variety of solutions (Table 2).

4.6 The ingredients of the solutions, in particular the solvents, can be varied so as to simulate a number of materials in terms of the photon mass energy-absorption coefficients, $(\mu_{en}/$ p), for X-rays and gamma-rays and electron mass collision stopping powers, $[(1/\rho) dE/dx]$, over a broad spectral energy range from 0.01 to 100 MeV (14). For special applications certain tissue-equivalent radiochromic solutions have been designed to simulate various materials and anatomical tissues, in terms of values of (μ_{en}/ρ) for photons and $[(1/\rho) dE/dx]$ for electrons (14) (see also ICRU Report 44). Tabulations of the values of (μ_{en}/ρ) for water (15), the anatomical tissues (15, 16), and three specially designed radiochromic solutions, for photons over the energy range from 0.01 to 20 MeV, and tabulations of the values of $[(1/\rho) dE/dx]$ (16) for water, the tissues and the radiochromic solutions for electrons over the energy range from 0.01 to 20 MeV are given in Refs (12-14). For additional information see ISO/ASTM Guide 51261, ASTM Practice E 666, and ICRU Reports 14, 17, 35, 37, and 44.

5. Apparatus

5.1 The following shall be used to determine absorbed dose with radiochromic liquid dosimetry systems:

5.1.1 Batch or Portion of a Batch of Radiochromic Liquid.


2

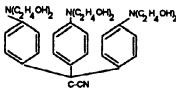


TABLE 1 Three Available Radiochromic Leuco Dyes, Their Molecular Structures, Molecular Weights, and Values of ϵ_m and Color IndexNumbers of the Parent Dyes (17, 19)

Radiochromic Leuco Dye (code)	Molecular Structure	Molecular Weight	Molar Linear Absorption Coefficient ^A (L mol ⁻¹ cm ⁻¹)	Color Index No.
Pararosaniline cyanide (PRC)	(See diagram below left)	314.376	140 000 (λ = 550 nm)	42 500
Hexa(hydroxyethyl)pararosaniline cyanide (HHEVC)	(See diagram below center)	578.715	100 000 (λ = 600 nm)	(none given)
New fuchsin cyanide (NFC)	(See diagram below right)	356.455	130 000 (λ = 560 nm)	42 500

^AThese values of molar linear absorption coefficients are given in Ref () for 2-methoxyethanol solutions containing 17 mM acetic acid. The values may vary somewhat in other solvents and with other additives.

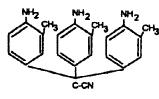


TABLE 2 Selected Radiochromic Solution Formulations and the Radiation Chemical Yields of Dye Cations in Solution

Radiochromic Leuco Dye (See Table 1)	Solution Formulation	Radiochromic Leuco Dye Concentration (mmol L ⁻¹)	Wavelength for Spectrophotometer, nm	Radiation Chemical Yield, µmol J ⁻¹	Nominal Dose Range, Gy	References
HHEVC	Dissolve in 2-methoxy ethanol containing 17 mmol L^{-1} acetic acid	5	599	0.025	10–1000	(5)
PRC	Dissolve in 2-methoxy ethanol containing 51 mmol	5	549	0.033	10–3000	(1)
NFC	Dissolve in dimethyl sulfoxide containing 17 mmol	NDA0.KD	P K 554	0.0031	100–30 000	(17)
PRC	Dissolve in dimethyl sulfoxide containing 17 mmol L ⁻¹ acetic acid and 30 mmol L ⁻¹ nitrobenzene	ndards.it	eh.54)	0.0040	3–40 000	(11)
HHEVC	nitrobenzoic acid and 10 % polyvinyl butyral (by		/68d80ede-f0d8-4	0.0051 4f05-842a-	50–5000	(19)
NFC	Weight) Dissolve in mixture of 85 % triethylphosphate and 15 % dimethyl sulfoxide (by volume), containing 68 mM acetic acid, 500 parts-per-million nitrobenzoic acid and 10 % polyvinyl butyral (by weight)	icbeeU/1sg-astm-5	1540-2 997	0.0055	100–10 000	(12)
HHEVC	Dissolve in mixture of 85 % triethylphosphate and 15 % dimethyl sulfoxide (by volume), containing 68 mM acetic acid, 500 parts-per-million nitrobenzoic acid and 10 % polyvinyl butyral (by weight)	100	608	0.28	0.5–10	(16)

5.1.2 Spectrophotometer or Photometer, having documentation covering analysis wavelengths, accuracy of wavelength selection, absorbance determination, analysis bandwidth, and stray light rejection. The spectrophotometer should be able to read visible spectrum absorbance values of up to 2 with an uncertainty of no more than ± 1 %.

5.1.3 *Glass Cuvettes*, having optical windows and path lengths of 5 to 100 mm, depending on the dose range of interest and on the size of the dosimeter ampoule used for irradiation. Glass flow cells with parallel optical windows may be an alternative means of holding the solutions for spectrophotometry.

5.1.4 Clean *glass containers* may be used for storage or irradiation of the solutions.

5.1.4.1 Containers for storing the solutions should have glass, aluminum, or polyethylene liners for the lids. The lids should be compatible with the unirradiated and irradiated solution.

5.1.4.2 Use glass ampoules which are flame sealed for containing the solution during irradiation, or alternatively, glass vials with lids having aluminum or polyethylene liners, or disposable plastic vials, using only polymeric materials known to be resistant to any chemical effects by the solvents that are used. Another type of container for irradiation may be a cuvette equipped with a tightly closed cap. The solution should be stored at <30°C in the dark.

NOTE 3—Any glass container should be cleaned with laboratory distilled water and detergent, rinsed with doubly distilled water and then with ethanol, dried at elevated temperature (>300°C) and cooled to ambient laboratory temperature before being used to hold the dosimetric solution. For more detail on cleaning glassware, see ASTM Practice C 912.

NOTE 4—The glass ampoules or vials for irradiation commonly have capacities of 2 to 5 mL. The glass is commonly amber to protect the solution from stray ultraviolet light.

6. Performance Check of Instrumentation

6.1 Check and document the performance of the photometer or spectrophotometer. (For detailed information on these performance checks, see ASTM Practices E 275, E 925, and E 958.)

6.1.1 When using a photometer, estimate and document the accuracy of the absorbance at time intervals not to exceed one month during periods of use, or whenever there are indications of poor performance.

6.1.2 When using a spectrophotometer, estimate and document the accuracy of the wavelength and absorbance at or near the selected analysis wavelength(s) at time intervals not to exceed one month during periods of use, or whenever there are indications of poor performance.

6.1.3 Document the comparison of information obtained in 6.1.1 or 6.1.2 with the original instrument specification to verify adequate performance and take appropriate corrective action if required.

7. Preparation of Dosimeters

7.1 Solvents—The solvents for dissolving radiochromic dye precursors include a number of liquid polar organic solvents, reagent grade or better. Examples include: ethanol, isopropanol, *n*-propanol, 2-methoxyethanol, 2-ethoxy-ethanol, *NN*-A dimethylformamide, dimethylsulfoxide, triethylphosphate (1, 9-11, 14, 17-19). The choice of the solvent depends on which dosimeter formulation is needed for a given use (see 7.3). Use a solvent from a bottle that has not previously been opened if the solvent is likely to degrade after opening (for example, by forming peroxides). https://standards.iteh.ai/catalog/standards.

7.2 *Dye Precursors*—The radiochromic dye precursorsol/iso utes for liquid dosimeters include the leuco dyes listed in Table 1.

7.3 Formulations, Molar Linear Absorption Coefficients, and Radiation Chemical Yields—A variety of combinations of solvents, radiochromic dyes, and selective additives are possible as indicated in the literature. Table 1 lists nominal values of molar linear absorption coefficients, also derived from Refs (17, 18).

7.4 *Preparation of Dosimeter Solutions*—Representative formulations for dissolution of the leuco dye solutes listed in Table 1 are given in Table 2, as typical liquid-radiochromic dosimeters.

7.4.1 These solutions are made at room temperature in a covered Erlenmeyer flask, using a magnetic stirring apparatus or other automatic stirring system. Stirring should be carried out long enough to assure complete dissolution. It is preferable in each case to dissolve the additives (for example, acetic acid, nitrobenzoic acid, polyvinyl butyral) before adding the leuco dye.

7.4.2 Exercise care in filling ampoules to avoid depositing solution in the ampoule neck. Subsequent heating during sealing may cause an undesirable chemical change in the dosimetric solution remaining in the ampoule's neck. For the same reason, exercise care to avoid heating the body of the ampoule during sealing.

NOTE 5-Caution: Some leuco dye solutes and some solvents may be

flammable or toxic or may become an irritant on extended exposure. Appropriate precautions as recommended by the suppliers of ingredients shall be exercised.

NOTE 6—Some of the solutions listed in Table 2 are supplied as standard reference dosimeters, with well-characterized linear responses over specified dose ranges, irradiation temperature-dependence values, radiation chemical yields, and linear molar absorption coefficients (12, 18). Such solutions do not always need calibration and may be used with appropriate radiation chemical yields and values of ϵ_m at an assigned spectrophotometric wavelength for the evaluation of absorbed dose in water (see (18) and ASTM Practice E 1026). When preparing solutions from ingredients as described in Table 2, each new solution should be calibrated since batches of commercially supplied leuco dyes may vary in quality (5, 9, 11, 13).

8. Calibration of the Dosimetry System

8.1 Prior to use, the dosimetry system shall be calibrated (20-22) in accordance with the user's documented procedure that specifies details of the calibration process and quality assurance requirements. This calibration procedure shall be repeated at regular intervals to ensure that the accuracy of the absorbed dose measurement is maintained within required limits. Detailed calibration procedures, including precautions related to influence factors, are provided in ISO/ASTM Guide 51261. That guide also recommends performing the calibration using conditions as similar as possible to those in the actual production irradiator (see 8.8.1.2 and Note 9 of ISO/ASTM Guide 51261.

8.2 *Calibration of Dosimeters*—Irradiation is a critical component of the calibration of the dosimetry system. Calibration irradiations may be performed in several ways, including irradiating the dosimeters using:

8.2.1 A calibration facility that provides an absorbed dose or an absorbed-dose rate having measurement traceability to nationally or internationally recognized standards, or

8.2.2 An in-house calibration facility that provides an absorbed dose or an absorbed-dose rate having measurement traceability to nationally or internationally recognized standards, or

8.2.3 A production or research irradiation facility together with reference or transfer–standard dosimeters that have measurement traceability to nationally or internationally recognized standards.

8.3 When the radiochromic liquid dosimeter is used as a reference or transfer–standard dosimeter, the calibration irradiation may be performed only as stated in 8.2.1, and not as stated in 8.2.2 or 8.2.3.

8.4 *Instrument Calibration*—Calibrations of the individual instruments used in the analysis of the dosimeters shall be verified at periodic intervals. These calibrations shall be traceable to nationally or internationally recognized standards. For example, if an optical absorbance-measuring instrument such as a spectrophotometer or densitometer is used, then appropriate standards shall be used to verify the accuracy of the optical absorbance at a specified wavelength(s). See ASTM Practices E 275, E 925, and E 958.

8.5 Fig. 1 shows a calibration curve for a typical radiochromic liquid dosimeter.

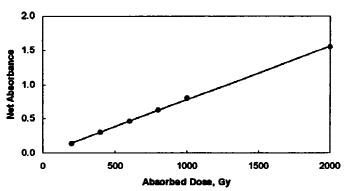


FIG. 1 Calibration Curve of a Typical Radiochromic Liquid Dosimeter [2 mM HHEVC in a Mixture of 85 % TEP and 15 % DMSO (by Volume), Containing 68 mmol·L⁻¹ Acetic Acid and 500 ppm Nitrobenzoic Acid and 10 % PVB (by Weight)], in Terms of $\Delta A_{608 \text{ nm}}$ Versus *D* (15)

9. Measurement and Analysis

9.1 Depending on the radiochromic solution used (see Tables 1 and 2), set the spectrophotometer at the appropriate wavelength. Use the same bandwidth for calibrations and routine measurements.

9.2 Set the balance of the spectrophotometer to zero with only air (no cuvette or flow cell) in the light path(s).

NOTE 7—For the formulations in Table 2, control of temperature during spectrophotometry is not essential because the temperature coefficient during spectrophotometric measurements is between 0 and -0.01 % per degree Celsius. However, the temperature during measurement should be within the temperature range from 20 to 30°C.

9.3 Select a clean cuvette of a selected optical pathlength Fill the cuvette with the solvent (or solvent mixture) used for the radiochromic solution being calibrated, and measure the absorbance (with air only in the reference beam of the spectrophotometer). Record this value $(A_{s,0})$.

NOTE 8—Choice of the cuvette pathlength depends on the maximum absorbance that can be measured accurately by the spectrophotometer and on the dose range and dosimetric solution's concentration chosen for a given calibration.

9.4 Empty the cuvette and rinse at least once with the dosimeter solution from an ampoule. Discard the rinse portion of the solution and fill the cuvette to the appropriate level with more solution from the same ampoule. Carefully wipe off any solution on the exterior surface of the cuvette and measure the absorbance. Repeat this procedure for all unirradiated and irradiated solutions, rinsing with blank solvent or solution between ampoules.

NOTE 9—Inadequate rinsing of the cuvette can lead to errors due to solution carryover (cross-contamination). Techniques for minimizing this effect are discussed in Refs (13) and (17).

9.5 Periodically during the measurement process, remeasure the absorbance of the solvent (or solvent mixture), A_s , first rinsing the cuvette with the solvent (or solvent mixture). Compare A_s with $A_{s,0}$ in order to detect and correct for any drift in the zero balance of the spectrophotometer or contamination of the cuvette.

9.6 Always check zero reading with only air in the light paths of the instrument.

9.7 Using a mean absorbance, A_0 , of the unirradiated dosimeters, calculate the net absorbance, ΔA_i , for each irradiated dosimeter.

10. Use of Dosimetry Systems

10.1 Use a minimum of two dosimeters for each dose measurement. The number of dosimeters required for the measurement of absorbed dose on or within a material is determined by the uncertainty of the dosimetry system and the acceptable uncertainty associated with the use. Appendix X3 of ASTM Practice E 668 describes a statistical method for determining this number.

10.2 Control or monitor the temperature of the dosimeters during irradiation. Take into account any temperature variations that affect dosimeter response (that is, specific net absorbance). For the formulations in Table 2 the temperature dependence of dosimeter response during irradiation between 20 and 50°C is -0.2 % per degree Celsius (13).

10.3 Determine the absorbed dose values from the net absorbance values and the calibration curve or response function.

10.4 Record the absorbed dose values and all other relevant data as outlined in Section 11.

11. Minimum Documentation Requirements

11.1 *Calibration*:

11.1.2 Record the dosimeter type and batch number (code). 11.1.2 Record or reference the irradiation date, irradiation

ISO/ASTM 51 stemperature, temperature variation (if any), dose range, radiaathlength dards tion source, and associated instrumentation used to calibrate dards for and analyze the dosimeters.

11.2 *Application*:

11.2.1 Record the date and temperature of irradiation, temperature variation (if any), and the date and temperature of absorbance measurement, for each dosimeter.

11.2.2 Record or reference the radiation source type and characteristics.

11.2.3 Record the absorbance, net absorbance value, temperature correction (if applicable), and resulting absorbed dose for each dosimeter. Reference the calibration curve or response function used to obtain the absorbed dose values.

11.2.4 Record or reference the uncertainty in the value of the absorbed dose.

11.2.5 Record or reference the measurement quality assurance plan used for the dosimetry system application.

12. Measurement Uncertainty

12.1 To be meaningful, a measurement of absorbed dose shall be accompanied by an estimate of uncertainty. Components of uncertainty shall be identified as belonging to one of two groups:

(A) those which are evaluated by statistical methods, or

(B) those which are evaluated by other means.

Additional information is given in ISO/ASTM Guide 51707 and references (23) and (24), where these components are referred to as Type A and Type B, respectively. In reporting uncertainty, other classifications such as precision and bias may be useful.