INTERNATIONAL STANDARD

First edition 2004-10-15

Road vehicles — Diagnostics on Controller Area Networks (CAN) —

Part 3:

Implementation of unified diagnostic services (UDS on CAN)

iTeh STANDARD PREVIEW Véhicules routiers — Diagnostic sur gestionnaire de réseau de

(stcommunication (CAN) ai) Partie 3: Mise en œuvre des services de diagnostic unifiés (SDU sur

CAN)SO 15765-3:2004 https://standards.iteh.ai/catalog/standards/sist/c90bbb76-c862-4147-a3fd-16ce0fc48168/iso-15765-3-2004

Reference number ISO 15765-3:2004(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 15765-3:2004</u> https://standards.iteh.ai/catalog/standards/sist/c90bbb76-c862-4147-a3fd-16ce0fc48168/iso-15765-3-2004

© ISO 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forewo	ord	. v		
Introductionvi				
1	Scope	. 1		
2	Normative references	. 1		
3	Terms, definitions and abbreviated terms	. 2		
4	Conventions	. 2		
5	Unified diagnostic services (UDS) applicability to OSI model	. 2		
6 6.1 6.2 6.3	Application and session layers Application layer services Application layer protocol Application layer and diagnostic session management timing	. 2 . 2 . 2 . 2		
6.3.1 632	General	.2 ⊿		
6.3.3	Session layer timing parameter definitions	.6		
6.3.4 6.3.5	Client and server timer resource requirements	. 6 . 9		
6.3.6	Error handling	27		
7	Network layer interface	29		
7.1	General information	29		
7.2 7 3	FlowControl N_PCI parameter definition ads/sist/000bbb76-c862-4147-a3fd-	29 29		
7.4	Mapping of N_PDU onto A_PDU for message reception	29		
8 8 1	Standardized diagnostic CAN identifiers	30 30		
8.2	Legislated 29 bit OBD CAN identifiers	30		
8.3	Enhanced diagnostics 29 bit CAN identifiers	30		
8.3.1	General information	30 24		
0.3.2 8.3.3	Structure of address	33		
8.3.4	Message retrieval	35		
8.3.5	Routing	36		
9	Diagnostic services implementation.	40		
9.1 9.2	Diagnostic and communication control functional unit	+0 42		
9.2.1	DiagnosticSessionControl (10 hex) service	42		
9.2.2	ECUReset (11 hex) service	42		
9.2.3	SecurityAccess (27 hex) service	43		
9.2.4	CommunicationControl (28 hex) service	43 12		
9.2.5	SecuredDataTransmission (84 hex) service	+3 44		
9.2.7	ControlDTCSetting (85 hex) service	44		
9.2.8	ResponseOnEvent (86 hex) service	44		
9.2.9	LinkControl (87 hex) service	47		
9.3	Data transmission functional unit	47 17		
9.3.2	ReadMemoryBvAddress (23 hex) service	47		
9.3.3	ReadScalingDataByldentifier(24 hex) service	48		

9.3.4	ReadDataByPeriodicIdentifier (2A hex) service	48
9.3.5	DynamicallyDefineDataIdentifier (2C hex) service	54
9.3.6	WriteDataByldentifier (2E hex) service	54
9.3.7	WriteMemoryByAddress (3D hex) service	54
9.4	Stored data transmission functional unit	54
9.4.1	ReadDTCInformation (19 hex) service	54
9.4.2	ClearDiagnosticInformation (14 hex) service	56
9.5	Input/Output control functional unit	56
9.5.1	InputOutputControlByIdentifier (2F hex) service	56
9.6	Remote activation of routine functional unit	56
9.6.1	RoutineControl (31 hex) service	56
9.7	Upload/Download functional unit	57
9.7.1	RequestDownload (34 hex) service	57
9.7.2	RequestUpload (35 hex) service	57
9.7.3	TransferData (36 hex) service	57
9.7.4	RequestTransferExit (37 hex) service	57
10	Non-volatile server memory programming process	58
10 1	General information	58
10.2	Detailed programming sequence	61
10.2.1	Programming phase #1 — Download of application software and/or application data	61
10.2.2	Programming phase #2 — Server configuration	66
10.3	Server reprogramming requirements	69
10.3.1	Programmable servers and their categories	69
10.3.2	Requirements for all servers to support programming	70
10.3.3	Requirements for programmable servers to support programming	70
10.3.4	Software, data identification and finderprints	74
10.3.5	Server routine access	77
10.4	Non-volatile server memory programming message flow examples	78
10.4.1	General information	78
10.4.2	Programming phase #1 — Pre-Programming step	78
10.4.3	Programming phase #1 — Programming step	79
10.4.4	Programming phase #1 — Post-Programming step	86
Annoy	A (normativo) Network configuration dataldentifier definitions	97
Annex	A (normalive) Network configuration dataidentilier definitions	01
Bibliog	Jraphy	92

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15765-3 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 3, *Electrical and electronic equipment*.

ISO 15765 consists of the following parts, under the general title Road vehicles — Diagnostics on Controller Area Networks (CAN): (standards.iteh.ai)

— Part 1: General information

ISO 15765-3:2004

- Part 2: Network layer services 16ce0fc48168/iso-15765-3-2004
- Part 3: Implementation of unified diagnostic services (UDS on CAN)
- Part 4: Requirements for emissions-related systems

Introduction

This part of ISO 15765 has been established in order to enable the implementation of unified diagnostic services, as specified in ISO 14229-1, on controller area networks (UDS on CAN).

To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model specified in ISO/IEC 7498 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped on this model, the services specified by ISO 15765 are divided into

- unified diagnostic services (layer 7), specified in this part of ISO 15765,
- network layer services (layer 3), specified in ISO 15765-2,
- CAN services (layers 1 and 2), specified in ISO 11898,

in accordance with Table 1.

Table 1 — Enhanced and legislated OBD diagnostic specifications applicable to the OSI layers

Open Systems Interconnection (OSI) layers	Vehicle manufacturer enhanced Teh SI Adiagnostics DPREV	Legislated on-board diagnostics (OBD)
Diagnostic application	User defined	ISO 15031-5
Application layer	ISQ:15765 <u>53-3:2004</u>	ISO 15031-5
Presentation layer http	s://standards.iteh.ai/catalog/r/andards/sist/c90bbb76-c	862-4147-a3fd- N/A
Session layer	ISO 15765-3	N/A
Transport layer	N/A	N/A
Network layer	ISO 15765-2	ISO 15765-4
Data link layer	ISO 11898-1	ISO 15765-4
Physical layer	User defined	ISO 15765-4

Road vehicles — Diagnostics on Controller Area Networks (CAN) —

Part 3: Implementation of unified diagnostic services (UDS on CAN)

1 Scope

This part of ISO 15765 specifies the implementation of a common set of unified diagnostic services (UDS), in accordance with ISO 14229-1, on controller area networks (CAN) in road vehicles as specified in ISO 11898. It gives the diagnostic services and server memory programming requirements for all in-vehicle servers connected to a CAN network and external test equipment. It does not specify any requirement for the in-vehicle CAN bus architecture.

2 Normative references STANDARD PREVIEW

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies 15765-3:2004

https://standards.iteh.ai/catalog/standards/sist/c90bbb76-c862-4147-a3fd-ISO 14229-1, Road vehicles — Unified diagnostic services (UDS) — Part 1: Specification and requirements

ISO 11898-1, Road vehicles — Controller area network (CAN) — Part 1: Data link layer and physical signalling

ISO 11898-2, Road vehicles — Controller area network (CAN) — Part 2: High-speed medium access unit

ISO 11898-3, Road vehicles — Controller area network (CAN) — Part 3: Low-speed, fault-tolerant, medium dependent interface¹⁾

ISO 15031-6, Road vehicles — Communication between vehicle and external equipment for emissions-related diagnostics — Part 6: Diagnostic trouble code definitions¹)

ISO 15765-1, Road vehicles — Diagnostics on controller area network (CAN) — Part 1: General information

ISO 15765-2, Road vehicles — Diagnostics on controller area network (CAN) — Part 2: Network layer service¹⁾

ISO 15765-4, Road vehicles — Diagnostics on controller area network (CAN) — Part 4: Requirements for emissions-related systems¹)

SAE J1939-21, *Recommended practice for a serial control and communications vehicle network* — Data link *layer*²⁾

¹⁾ To be published.

²⁾ Society of Automotive Engineers standard.

3 Terms, definitions and abbreviated terms

For the purposes of this document, the terms and definitions given in ISO 14229-1, ISO 15765-1 and ISO 15765-2 and the following abbreviated terms apply.

- DA destination address
- ID identifier
- DLC data length code
- GW gateway
- LSB least significant bit
- MSB most significant bit
- NA network address
- SA source address
- SM subnet mask
- TOS type of service

4 Conventions iTeh STANDARD PREVIEW

This part of ISO 15765 is based on conventions defined in ISO 14229-1, which are guided by OSI Service Conventions (see ISO/TR 8509) as they apply for diagnostic services.

ISO 15765-3:2004

https://standards.iteh.ai/catalog/standards/sist/c90bbb76-c862-4147-a3fd-5 Unified diagnostic services (UDS) applicability to OSI model

See Figure 1.

6 Application and session layers

6.1 Application layer services

This part of ISO 15765 uses the application layer services as defined in ISO 14229-1 for client-server based systems to perform functions such as test, inspection, monitoring, diagnosis or programming of on-board vehicle servers.

6.2 Application layer protocol

This part of ISO 15765 uses the application layer protocol as defined in ISO 14229-1.

6.3 Application layer and diagnostic session management timing

IMPORTANT — Any N_USData.indication with <N_Result> not equal to N_OK that is generated in the server shall not result in a response message from the server application.

6.3.1 General

The following specifies the application layer and session layer timing parameters and how they are handled for the client and the server.

The following communication scenarios shall be distinguished from one another:

- a) physical communication during
 - 1) default session, and
 - 2) non-default session session handling required;
- b) functional communication during
 - 1) default session, and
 - 2) non-default session session handling required.

For all cases, the possibility of requesting an enhanced response-timing window by the server via a negative response message, including a response code 78 hex, shall be considered.

The network layer services as defined in ISO 15765-2 are used to perform the application layer and diagnostic session management timing in the client and the server.

6.3.2 Application layer timing parameter definitions

The application layer timing parameter values for the default diagnostic session shall be in accordance with Table 2.

Timing parameter	Description	Туре	Min.	Max.
P2 _{CAN_Client}	Timeout for the client to wait after the successful transmission of a request message (indicated via N_USData.con) for the start of incoming response messages (N_USDataFirstFrame.ind of a multi-frame message or N_USData.ind of a SingleFrame message).	Timer reload value	P2 _{CAN_Server_max} + ΔP2 _{CAN}	N/A ^a
P2* _{CAN_Client}	Enhanced timeout for the client to wait after the reception of a negative response message with response code 78 hex (indicated via N_USData.ind) for the start of incoming response messages (N_USDataFirstFrame.ind of a multi- frame message or N_USData.ind of a SingleFrame message).	Timer reload value	P2* _{CAN_Server_max} + ∆P2 _{CAN_rsp}	N/A ^b
P2 _{CAN_Server}	Performance requirement for the server to start with the response message after the reception of a request message (indicated via N_USData.ind).	Performance requirement	0	50 ms
P2* _{CAN_Server}	Performance requirement for the server to start with the response message after the transmission of a negative response message (indicated via N_USData.con) with response code 78 hex (enhanced response timing).	Performance requirement	0 c	5000 ms
P3 _{CAN_Client_Phys}	Minimum time for the client to wait after the successful transmission of a physically addressed required (indicated via N_USDatal.con) with no response required before it can transmit the next) physically addressed) request message (see 6.3.5.3).	Timer reload value p76-c862-4147 04	P2CAN_Server_max	N/A ^d
P3 _{CAN_Client_Func}	Minimum time for the client to wait after the successful transmission of a functionally addressed request message (indicated via N_USData.con) before it can transmit the next functionally addressed request message in case no response is required or the requested data is only supported by a subset of the functionally addressed servers (see $6.3.5.3$).	Timer reload value	P2 _{CAN_Server_max}	N/A ^d

Table 2 — Application layer timing parameter	er definitions for the defaultSession
--	---------------------------------------

^a The maximum time a client waits for a response message to start is at the discretion of the client, provided that $P2_{CAN_Client}$ is greater than the specified minimum value of $P2_{CAN_Client}$.

^b The value that a client uses for $P2^{*}_{CAN_Client}$ is at the discretion of the client, provided it is greater than the specified minimum value of $P2^{*}_{CAN_Client}$.

^c During the enhanced response timing, the minimum time between the transmission of consecutive negative messages, each with response code 78 hex, shall be $\frac{1}{2} P2^*_{CAN_Server_max}$, with a maximum tolerance of $\pm 20\%$ of $P2^*_{CAN_Server_max}$.

^d The maximum time a client waits until it transmits the next request message is at the discretion of the client, provided that for nondefault sessions the S3_{Server} timing is kept active in the server(s). The parameter $\Delta P2_{CAN}$ considers any system network design-dependent delays such as delays introduced by gateways and bus bandwidth plus a safety margin (e.g. 50 % of worst case). The worst-case scenario (transmission time necessary for one "round trip" from client to server and back from server to client), based on system design, is impacted by

- a) the number of gateways involved,
- b) CAN frame transmission time (baud rate),
- c) CAN bus utilization, and
- d) the CAN device driver implementation method (polling vs interrupt) and processing time of the network layer.

The value of $\Delta P2_{CAN}$ is divided into the time to transmit the request to the addressed server and the time to transmit the response to the client:

$$\Delta P2_{CAN} = \Delta P2_{CAN Reg} + \Delta P2_{CAN Rsp}$$

Figure 2 provides an example of how $\Delta P2_{CAN}$ can be composed.

Figure 2 — Example for $\Delta P2_{CAN}$ — SingleFrame request and response message

NOTE For the sake of simplicity in describing the timing parameters, in all the figures that follow it is assumed that the client and the server are located on the same network. All descriptions and figures are presented in a time-related sequential order.

6.3.3 Session layer timing parameter definitions

When a diagnostic session other than the defaultSession is started, then a session handling is required which is achieved via the session layer timing parameter given in Table 3.

Timing parameter	Description		Recommended timeout	Timeout
			ms	ms
S3 _{Client}	Time between functionally addressed TesterPresent (3E hex) request messages transmitted by the client to keep a diagnostic session other than the defaultSession active in multiple servers (functional communication) or maximum time between physically transmitted request messages to a single server (physical communication).	Timer reload value	2 000 ms	4 000 ms
S3 _{Server}	Time for the server to keep a diagnostic session other than the defaultSession active while not receiving any diagnostic request message.	Timer reload value	N/A	5 000 ms

Furthermore, the server might change its application layer timings P2_{CAN_Server} and P2*_{CAN_Server} when transitioning into a non-default session in order to achieve a certain performance or to compensate restrictions which might apply during a non-default diagnostic session. The applicable timing parameters for a non-default diagnostic session are reported in the Diagnostic SessionControl positive response message in the case where a response is required to be transmitted (see service description in 9.2.1) or have to be known in advance by the client in case no response is required to be transmitted. When the client starts a non-default session functionally, then it shall adapt to the timing parameters of the responding servers.

ISO 15765-3:2004

Table 4 defines the conditions for the client and the server to start/restart its $S3_{Client}/S3_{Server}$ timer. For the client a periodically transmitted functionally addressed TesterPresent (3E hex) request message shall be distinguished from a sequentially transmitted physically addressed TesterPresent (3E hex) request message, which is only transmitted in case of the absence of any other diagnostic request message. For the server there is no need to distinguish between that kind of TesterPresent (3E hex) handling. Furthermore, Table 4 shows that the $S3_{Server}$ timer handling is based on the network layer service primitives, which means that the $S3_{Server}$ timer is also restarted upon the reception of a diagnostic request message that is not supported by the server.

6.3.4 Client and server timer resource requirements

The timer resource required for the client and the server to fulfil the above given timing requirements during the default session and any non-default session shall be in accordance with Tables 5 and 6 list. During a non-default session, the additional timer resource requirements given in Table 6 shall apply for the client and the server.

Timing Parameter	Action	Physical and functional communication, using functionally addressed, periodically transmitted TesterPresent request message	Physical communication only, using a physically addressed, sequentially transmitted TesterPresent request message		
	Initial start	N_USData.con that indicates the completion of the DiagnosticSessionControl (10 hex) request message. This is only true for if the session type is a non-default session.	N_USData.con that indicates the completion of the DiagnosticSessionControl (10 hex) request message in case no response is required.		
			N_USData.ind that indicates the reception of the DiagnosticSessionControl (10 hex) response message in case a response is required.		
S3 _{Client}		N_USData.con that indicates the completion of the functionally addressed TesterPresent (3E hex) request message, which is transmitted each time the S3 _{Client} timer times out.	N_USData.con that indicates the completion of any request message in case no response is required.		
	Subsequent start		N_USData.ind that indicates the reception of any response message in case a response is required.		
			N_USData.ind that indicates an error during the reception of a multi-frame response message.		
	Initial start	N_USData.con that indicates the con DiagnosticSessionControl positive response session to a non-default session, in case a res	mpletion of the transmission of a message for a transition from the default sponse message is required.		
	initial start	Successful completion of the requested action of the service DiagnosticSessionControl (10 hex) for a transition from the default session to a non-default session, in case no response message is required/allowed.			
	https:// Subsequent stop	N_USDataFirstFrame.ind that indicates the start of a multi-frame request message or N_USData.ind that indicates the reception of any SingleFrame request message. If the defaultSession is active, the S3 _{Server} timer is disabled.			
S3 _{Server}		N_USData.con that indicates the completion service execution (final response mess required/allowed to be transmitted (this messages). A negative response with respon timer.	of any response message that concludes a age) in case a response message is includes positive and negative response ase code 78 hex does not restart the S3 _{Server}		
	Subsequent start	Completion of the requested action (service conclusion) in case no response message (positive and negative) is required/allowed.			
		N_USData.ind that indicates an error duri message.	ng the reception of a multi-frame request		
		See 6.3.5.4 for further details regarding the S3 _{Server} handling in the server when the server is requested to transmit unsolicited response message such as periodic data or responses based on an event.			

Table 4 — Session layer timing start/stop conditions for the client and the server

Timing parameter	Client	Server
P2 _{CAN_Client}	A single timer is required for each logical communication channel (physical and functional communication), e.g. each point-to-point communication requires a separate communication channel.	N/A
P2 _{CAN_Server}	N/A	An optional timer might be required for the enhanced response timing in order to ensure that subsequent negative response messages with response code 78 hex are transmitted prior to the expiration of P2* _{CAN_Server} .
P3 _{CAN_Physical}	A single timer is required per logical physical communication channel.	N/A
P3 _{CAN_Functional}	A single timer is required per logical functional communication channel.	N/A

Table 5 — Timer resources requirements during defaultSession

Table 6 — Additional timer resources requirements during non-defaultSession

Timing Parameter	Client	Server
S3 _{Client}	A single timer is required when using a periodically transmitted, functionally addressed TesterPresent (3E) hex request message to keep the servers in a non-defaultSession. There is no need for additional timers per activated diagnostic sessions. A single timer is required for each point-to-point communication channel when using a sequentially transmitted, physically addressed TesterPresent (3E) hex request message to keep a single server in a non-defaultSession in case of the absence of	REVIEW .ai) N/A bb76-c862-4147-a3fd- 004
	another diagnostic request message then.	
S3 _{Server}	N/A	A single timer is required in the server, because only a single diagnostic session can be active at a time in a single server.

6.3.5 Detailed timing parameter descriptions

6.3.5.1 Physical communication

6.3.5.1.1 Physical communication during defaultSession

Figure 3 graphically depicts the timing handling in the client and the server for a physically addressed request message during the default session.

^a The diagnostic application of the client starts the transmission of the request message by issuing a N_USData.req to its network layer. The network layer transmits the request message to the server. The request message can either be a single-frame message or a multi-frame message.

^b In the case of a multi-frame message, the start of the request is indicated in the server via N_USDataFF.ind that is issued by its network layer.

^c The completion of the request message is indicated in the client via N_USData.con. When receiving the N_USData.con the client starts its $P2_{CAN_Client}$ timer, using the default reload value $P2_{CAN_Client}$. The value of the $P2_{CAN_Client}$ timer shall consider any latency that is involved based on the vehicle network design (communication over gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the server are located on the same network.

^d The completion of the request message is indicated in the server via the N_USData.ind.

^e The server is required to start with its response message within $P2_{CAN_Server}$ after the reception of N_USData.ind. This means that, in the case of a multi-frame response message, the FirstFrame shall be sent within $P2_{CAN_Server}$ and, for single-frame response messages, that the SingleFrame shall be sent within $P2_{CAN_Server}$.

^f In the case of a multi-frame response message, the reception of the FirstFrame is indicated in the client via the N_USDataFF.ind of its network layer. When receiving the FirstFrame indication, the client stops its $P2_{CAN}$ Client timer.

⁹ The network layer will generate a final N_USData.ind in case the complete message is received or an error occurred during the reception. In case of a single-frame response message, the reception of the SingleFrame is indicated in the client via a single N_USData.ind. When receiving this single frame indication, the client stops its P2_{CAN_Client} timer.

^h The completion of the response message is indicated in the server via N_USData.con.

Figure 3 — Physical communication during default session