INTERNATIONAL STANDARD

First edition 2001-06-15

Hygrothermal performance of building materials and products — Determination of water vapour transmission properties

Performance hygrothermique des matériaux et produits pour le bâtiment — Détermination des propriétés de transmission de la vapeur d'eau

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12572:2001

https://standards.iteh.ai/catalog/standards/sist/1c6dda89-5fab-4948-9488ddfd962b987c/iso-12572-2001

Reference number ISO 12572:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12572:2001 https://standards.iteh.ai/catalog/standards/sist/1c6dda89-5fab-4948-9488ddfd962b987c/iso-12572-2001

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 12572 was prepared by the European Committee for Standardization (CEN) in collaboration with ISO Technical Committee TC 163, *Thermal insulation*, Subcommittee SC 1, *Test and measurement methods*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Throughout the text of this standard, read,"...this European Standard, "to mean "...this International Standard...".

Annexes A to G form a normative part of this International Standard. Annexes H and J are for information only.

https://standards.iteh.ai/catalog/standards/sist/1c6dda89-5fab-4948-9488ddfd962b987c/iso-12572-2001

Contents

	Page
Foreword	v
1 Scope	1
2 Normative reference	1
3 Definitions, symbols and units	2
4 Principle	4
5 Apparatus	4
6 Test specimens	5
7 Procedure	7
8 Calculation and expression of results	10
9 Accuracy of measurement	12
10 Test report iTeh STANDARD PREVIEW	14
Annex A (normative) Methods suitable for self supporting materials	15
Annex B (normative) Methods suitable for loose fills https://standards.iten.av/catalog/standards/sist/1c6dda89-5fab-4948-9488-	17
Annex C (normative) Methods suitable for membranes and foils	19
Annex D (normative) Methods suitable for mastics and sealants	20
Annex E (normative) Methods suitable for paint, varnishes, etc.	22
Annex F (normative) Correction for the effect of a masked edge of a specimen	23
Annex G (normative) Correction for resistance of air layers	24
Annex H (informative) Weighing repeatability, weighing interval and specimen size nee to achieve desired accuracy	eded 25
Annex J (informative) Conversion table for water vapour transmission units	26
Bibliography	27

Foreword

The text of EN ISO 12572:2001 has been prepared by Technical Committee CEN/TC 89 "Thermal performance of buildings and building components", the secretariat of which is held by SIS, in collaboration with Technical Committee ISO/TC 163 "Thermal insulation".

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2001, and conflicting national standards shall be withdrawn at the latest by December 2001.

This standard is one of a series of standards which specify test methods for the thermal and moisture related properties of building materials and products.

The annexes A, B, C, D, E, F and G are normative.

The annexes H and J are informative.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

(standards.iteh.ai)

ISO 12572:2001 https://standards.iteh.ai/catalog/standards/sist/1c6dda89-5fab-4948-9488ddfd962b987c/iso-12572-2001

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12572:2001 https://standards.iteh.ai/catalog/standards/sist/1c6dda89-5fab-4948-9488ddfd962b987c/iso-12572-2001

1 Scope

This standard specifies a method based on cup tests for determining the water vapour permeance of building products and the water vapour permeability of building materials under isothermal conditions. Different sets of test conditions are specified.

The general principles are applicable to all hygroscopic and non hygroscopic building materials and products, including those with facings and integral skins. Annexes give details of test methods suitable for different material types. This standard is not applicable in the case of test specimens with water vapour diffusion-equivalent air layer thickness values less than 0,1 m, as a result of increasing uncertainty in the measurement results. If the measured water vapour diffusion-equivalent air layer thickness is greater than 1500 m the material can be considered impermeable.

The results obtained by this method are suitable for design purposes, production control and for inclusion in product specifications.

2 Normative reference

iTeh STANDARD PREVIEW

This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

ISO 9346 Thermal insulation - Mass transfer - Physical quantities and definitions

3 Definitions, symbols and units

3.1 Terms and definitions

For the purposes of this standard, the terms and definitions given in ISO 9346 and the following apply.

3.1.1

density of water vapour flow rate

mass of water vapour transferred through the specimen per area and per time

3.1.2

homogeneous material

material with properties likely to affect the transmission of water vapour which do not vary on a macroscopic scale

3.1.3

water vapour permeance

density of water vapour flow rate divided by the water vapour pressure difference between the two specimen faces

3.1.4

iTeh STANDARD PREVIEW

reciprocal of water vapour permeance (standards.iteh.ai)

3.1.5

ISO 12572:2001

https://standards.iteh.ai/catalog/standards/sist/1c6dda89-5fab-4948-9488water vapour permeability ddfd962b987c/iso-12572-2001

product of the water vapour permeance and the thickness of a homogeneous specimen

NOTE Water vapour permeability can only be calculated for specimens of a homogeneous material.

3.1.6

water vapour resistance factor

water vapour permeability of air divided by that of the material concerned

NOTE The water vapour resistance factor indicates how much greater the resistance of the material is compared to an equally thick layer of stationary air at the same temperature.

3.1.7

water vapour diffusion-equivalent air layer thickness

thickness of a motionless air layer which has the same water vapour resistance as the specimen

3.2 Symbols and units

Symbol	Quantity	Unit
Α	area of specimen	m ²
G	water vapour flow rate through specimen	kg/s
$R_{ m v}$	gas constant for water vapour $= 462$	$N \cdot m/(kg \cdot K)$
S	hydraulic diameter of specimen	m
Т	thermodynamic temperature	Κ
W_p	water vapour permeance with respect to partial vapour pressure	kg/(m ² ·s·Pa)
Z_p	water vapour resistance with respect to partial	m ² ·s·Pa/kg
D	vapour pressure mean thickness of specimen	m
g	density of water vapour flow rate	$kg/(m^2 \cdot s)$
l	diameter of circle or side of square specimen	m
т	mass of specimen and cup assembly	kg
р	barometric pressure	hPa
p_0	standard barometric pressure $= 1013,25$	hPa
s _d	water vapour diffusion-equivalent air layer thickness	m
t		S
$\Delta p_{ m v}$	water vapour pressure difference across specimen	Pa
$\delta_{ m p}$	water vapour permeability with respect to partial vapour pressure	kg/(m·s·Pa)
${\delta}_{ m a}$	water vapour permeability of air with respect to	kg/(m·s·Pa)
ľ	tpartial wapour pressure and ards/sist/1 c6dda89-5 fab-4948-9488	-
μ	water vapour resistance factor 2572-2001	-
θ	Celsius temperature	°C
arphi	relative humidity	-

NOTE The above units comply with ISO 9346; a conversion table to other units commonly used in permeability measurements is given in annex J.

3.3 Subscripts

Subscript	Denoting
Ι	interval
r	repeatability
a	air
с	corrected for air layer
f	film
j	joint
m	membrane
me	masked edge
S	specimen
t	total

4 Principle

The test specimen is sealed to the open side of a test cup containing either a desiccant (dry cup) or an aqueous saturated solution (wet cup). The assembly is then placed in a temperature and humidity controlled test chamber. Because of the different partial vapour pressure between the test cup and the chamber, a vapour flow occurs through permeable specimens. Periodic weighings of the assembly are made to determine the rate of water vapour transmission in the steady state.

5 Apparatus

a) Test cups resistant to corrosion from the desiccant or salt solutions they contain; typically cups are made of glass or metal.

The design of cups suitable for testing various different types of materials is described in annexes A to E.

NOTE Circular cups can be easier to seal and transparent cups allow better control of salt solutions.

b) For certain cups and sealing methods (see annex A), a template, with shape and size corresponding to that of the test cup, is used when applying the sealant to give a sharply defined, reproducible test area. The template shall have an area of at least 90 % of the specimen to limit non-linear vapour flow.

ISO 12572:2001

- c) Measuring instruments tapable of determining specimen thickness with accuracy required ddfd962b987c/iso-12572-2001
- d) Analytical balance, capable of weighing the test assembly with the repeatability needed for the required accuracy. Wherever possible a balance of 0,001 g resolution shall be used. For heavy test assemblies a balance resolution of 0,01 g may be sufficient. See annex H for information linking the balance resolution to the duration of test.

NOTE The factors that affect the necessary accuracy of measurement are discussed in annex H.

- e) Constant temperature, constant humidity chamber, capable of being maintained within ± 3 % relative humidity around the set point relative humidity and ± 0.5 K around the set point temperature. In order to ensure uniform conditions throughout the chamber, the air shall be stirred so as to obtain velocities between 0.02 m/s and 0.3 m/s. If highly permeable materials are being tested, means should be provided to measure the air speed directly over the upper surface of the specimen see annex G.
- f) Suitable sensors and a logging system to continuously record the temperature, relative humidity and, if necessary, the barometric pressure within the test chamber. The sensors shall be calibrated at regular intervals.

g) Sealant, which is impermeable to water vapour, does not undergo physical or chemical changes during the test and does not cause physical or chemical changes to the specimen.

NOTE Examples of sealants suitable for specific materials, if necessary, are listed in the appropriate annex.

6 Test specimens

6.1 General principles for preparation of test specimens

The test specimens shall be representative of the product. If the product has natural skins or integral facings, these may be included in the test specimen, but they shall be removed if it is intended to measure the permeability of the core material. If the skins or facings are different on the two sides, specimens shall be tested with vapour flow in the direction of the intended use. If the direction of flow is not known, duplicate specimens shall be prepared and tests carried out for each direction of flow. Unless the product to be tested in isotropic, the test specimens shall be cut so that the parallel faces are normal to the direction of vapour flow of the product in use.

Specimen preparation shall not involve methods which damage the surface in ways which affect the flow of water vapour.

(standards.iteh.ai)

6.2 Dimensions of test specimens

6.2.1 Shaperand/fithdards.iteh.ai/catalog/standards/sist/1c6dda89-5fab-4948-9488ddfd962b987c/iso-12572-2001

Test specimens shall be cut to correspond with the dimensions of the chosen test assembly - see annexes A to E.

6.2.2 Exposed area

The diameter of a circular specimen or the side of a square specimen shall be at least twice the specimen thickness. The exposed area (the arithmetic mean of the upper and lower free surface areas) shall be at least $0,005 \text{ m}^2$. The upper and lower free surface areas shall not differ by more than 3 % of the mean in the case of homogeneous materials, and by no more than 10 % in the case of other materials.

6.2.3 Thickness of test specimens.

Whenever possible, the thickness of the specimen shall be that of the product in use. In the case of homogeneous materials, if the thickness exceeds 100 mm, this may be reduced by cutting. In the case of non homogeneous materials, such as concrete containing aggregates, the thickness should be at least three times (and preferably five times) the largest particle size.

If a material contains macroscopic formed voids, the solid material should be tested and the resistance of the whole material calculated from the proportions of solid to air space assuming one dimensional vapour flow.

If it is necessary to test a product so thick that the available test cups do not have an area large enough to comply with 6.2.2, the product may, only as a last resort, be sliced. In this case, all slices shall be tested and the results reported.

NOTE This procedure may lead to significant inaccuracies, especially when wet cup tests are carried out on hygroscopic materials.

6.3 Number of test specimens

If the specimen area is less than $0,02 \text{ m}^2$, a minimum of five specimens shall be tested, otherwise a minimum of three specimens shall be tested.

6.4 Conditioning of test specimens

Before testing, the test specimens shall be stored at (23 ± 5) °C, (50 ± 5) % relative humidity for a period long enough for their weight to stabilise so that three successive daily determinations of their weight agree to within 5 %.

NOTE This period will vary from a few hours in the case of some insulating materials to 3 - 4 weeks or more for massive hygroscopic materials and products. Wet field specimens may be dried before conditioning using the methods specified in ISO 12570, *Hygrothermal performance of building materials and products - Determination of moisture content by drying at elevated temperature.*

A period of conditioning is not necessary in the case of plastic membranes.

https://standards.iteh.ai/catalog/standards/sist/1c6dda89-5fab-4948-9488ddfd962b987c/iso-12572-2001