

SLOVENSKI STANDARD SIST ISO 6279:2006

01-december-2006

Drsni ležaji – Aluminijeve zlitine za masivne ležaje

Plain bearings - Aluminium alloys for solid bearings

iTeh STANDARD PREVIEW (standards iteh ai)

Ta slovenski standard je istoveten z:

SIST ISO 6279:2006

https://standards.iteh.ai/catalog/standards/sist/814f6344-4931-4f56-981edc1d020af3d4/sist-iso-6279-2006

<u>ICS:</u>

21.100.10 Drsni ležaji 77.150.10 Aluminijski izdelki

Plain bearings Aluminium products

SIST ISO 6279:2006

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 6279:2006</u> https://standards.iteh.ai/catalog/standards/sist/814f6344-4931-4f56-981edc1d020af3d4/sist-iso-6279-2006

INTERNATIONAL STANDARD

ISO 6279

Second edition 2006-04-01

Plain bearings — Aluminium alloys for solid bearings

Paliers lisses — Alliages d'aluminium pour paliers massifs

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 6279:2006</u> https://standards.iteh.ai/catalog/standards/sist/814f6344-4931-4f56-981edc1d020af3d4/sist-iso-6279-2006

Reference number ISO 6279:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 6279:2006 https://standards.iteh.ai/catalog/standards/sist/814f6344-4931-4f56-981edc1d020af3d4/sist-iso-6279-2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6279 was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 2, *Materials and lubricants, their properties, characteristics, test methods and testing conditions*.

This second edition cancels and replaces the first edition (ISO 6279:1979), which has been technically revised. (standards.iteh.ai)

SIST ISO 6279:2006 https://standards.iteh.ai/catalog/standards/sist/814f6344-4931-4f56-981edc1d020af3d4/sist-iso-6279-2006

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 6279:2006</u> https://standards.iteh.ai/catalog/standards/sist/814f6344-4931-4f56-981edc1d020af3d4/sist-iso-6279-2006

Plain bearings — Aluminium alloys for solid bearings

1 Scope

This International Standard specifies the composition and properties of preferred cast aluminium alloys for use in solid plain bearings. Other alloys can be specified with agreement between manufacturer and user.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4384-2, Plain bearings — Hardness testing of bearing metals — Part 2: Solid materials

iTeh STANDARD PREVIEW Composition and mechanical properties (standards.iteh.ai)

3.1 Composition

3

SIST ISO 6279:2006

Preferred compositionsparetgiven sine Tablet allog/standards/sist/814f6344-4931-4f56-981edc1d020af3d4/sist-iso-6279-2006

Methods of analysis shall be mutually agreed between manufacturer and user.

3.2 Mechanical properties

Mechanical properties are given in Table 1.

Tensile strength and elongation are mandatory properties which are the subject of quality control checks carried out by the material manufacturers.

Hardness is a mandatory property which may be checked on individual bearings.

Typical values of other properties are given for design guidance.

4 Test methods

The tensile test shall be carried out as agreed between manufacturer and user.

Test methods and mandatory values shall be agreed between manufacturer and user.

Hardness testing shall be carried out in accordance with ISO 4384-2.

		Aluminium alloy					
		Al Sn6 Cu	Al Sn6 Cu Ni	Al Sn20 Cu	Al Zn4,5 Si Cu Pb	Al Zn5 Si Cu Pb	Al Si12 Cu Mg Ni
		Chemical composition % (m/m)					
Chemical element	AI	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder
	Sn	5,5 to 6,5	5,5 to 7	17,5 to 22,5	0,2 max.	0,2 max	_
	Cu	1,3 to 1,7	0,7 to 1,3	0,7 to 1,3	0,9 to 1,2	0,9 to 1,2	0,8 to 1,5
	Ni	0,2 max.	0,7 to 1,3	_	0,2 max.	0,2 max.	1,3 max.
	Si	0,3 max.	0,7 max.	0,7 max.	1,0 to 2,0	1,2 to 2,0	11,0 to 13,0
	Fe	0,4 max.	0,7 max.	0,7 max.	0,4 max.	0,6 max.	0,7 max.
	Mn	0,2 max.	0,1 max.	0,7 max.	0,3 max.	0,3 max.	0,3 max.
	Zn	0,2 max.	_	_	4,4 to 5,0	5,0 to 5,5	0,3 max.
	Mg	0,1 max.	_	_	0,4 to 0,6	0,4 to 0,6	0,8 to 1,3
	Ti	0,05 to 0,2	0,2 max.	—	0,02 to 0,15	0,02 to 0,15	0,2 max.
Total other elements, max.		0,5	0,5	0,5	0,5	0,5	0,5
		TTe	Mech	anical prop	erties		
Hardness Brinell HB10/1 000/10		35 to 40	35 to 45	30 to 38	iteh 3i	50 to 60	90 to 120
Tensile strength <i>R</i> _m N/mm ²		130 to 140 https://star	dards.iteh.a/ca	SIST ISO 62 110 to 130 alog/standard	79:2006 s/sist/81410344-493	180 to 220	200 to 250
Elongation A %		30 to 36	10 to 20	20a13d4/sist-1 28 to 32	20 to 22	19 to 21	0,3 to 0,8
0,2 % Proof stress R _{p0,2} N/mm ²		50 to 60	45 to 60	40 to 60	80 to 110	100 to 120	190 to 230
Elastic modulus E N/mm ² × 10 ³	≈	69	71	63	75	75	75
Thermal expansion 10 ^{- 6} /K	α ≈	23	23	24	23	23	21
Thermal conductivity W/(m · K)	γ λ ≈	160	160	155	170	170	184
Density $ ho$ kg/dm ³	*	2,9	2,9	3,12	2,9	2,9	2,7

Table 1 — Aluminium alloys