INTERNATIONAL STANDARD

ISO 12716

First edition 2001-06-15

Non-destructive testing — Acoustic emission inspection — Vocabulary

Essais non destructifs — Contrôle par émission acoustique — Vocabulaire

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12716:2001 https://standards.iteh.ai/catalog/standards/sist/f881bf2b-7755-4c48-ba0f-cbfa5eda18e0/iso-12716-2001

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12716:2001 https://standards.iteh.ai/catalog/standards/sist/f881bf2b-7755-4c48-ba0f-cbfa5eda18e0/iso-12716-2001

© ISO 2001

The reproduction of the terms and definitions contained in this International Standard is permitted in teaching manuals, instruction booklets, technical publications and journals for strictly educational or implementation purposes. The conditions for such reproduction are: that no modifications are made to the terms and definitions; that such reproduction is not permitted for dictionaries or similar publications offered for sale; and that this International Standard is referenced as the source document.

With the sole exceptions noted above, no other part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 12716 was prepared by Technical Committee ISO/TC 135, *Non-destructive testing*, Subcommittee SC 3, *Acoustical methods*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12716:2001 https://standards.iteh.ai/catalog/standards/sist/f881bf2b-7755-4c48-ba0f-cbfa5eda18e0/iso-12716-2001

© ISO 2001 – All rights reserved iii

Introduction

This International Standard is a compilation of terms to provide a precise understanding or interpretation of acoustic emission inspection. These terms serve to secure the foundation of acoustic emission technology growth within the academic and industrial communities.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12716:2001 https://standards.iteh.ai/catalog/standards/sist/f881bf2b-7755-4c48-ba0f-cbfa5eda18e0/iso-12716-2001

Non-destructive testing — Acoustic emission inspection — Vocabulary

1 Scope

This International Standard defines the terminology that is used in acoustic emission inspection and forms a common basis for standards and general use.

2 Terms and definitions

2.1

acoustic emission

ΔE

class of phenomena whereby transient elastic waves are generated by the rapid release of energy from localized sources within a material, or the transient waves so generated

NOTE Acoustic emission is the recommended term for general use. Other terms that have been used in AE literature include: (standards.iteh.a1)

- a) stress wave emission;
- b) microseismic activity; ISO 12716:2001 https://standards.iteh.ai/catalog/standards/sist/f881bf2b-7755-4c48-ba0f-
- c) emission or acoustic emission with other qualifying modifiers, 2001

2.2

acousto-ultrasonics

ΔΠ

nondestructive examination method that uses induced stress waves to detect and assess diffuse defect states, damage conditions and variations of mechanical properties of a test structure combining aspects of acoustic emission (AE) signal analysis with ultrasonic materials characterization techniques

2.3

AE signal duration

time interval between AE signal start and AE signal end

2.4

AE signal end

recognized termination of an AE signal, usually defined as the last crossing of the threshold by that signal

2.5

AE signal generator

device which can repeatedly induce a specified transient signal into an AE instrument

2.6

AE signal rise time

time interval between AE signal start and the peak amplitude of that AE signal

© ISO 2001 – All rights reserved

AE signal start

beginning of an AE signal as recognized by the system processor, usually defined by an amplitude excursion exceeding threshold

2.8

array

group of two or more AE sensors positioned on a structure for the purposes of detecting and locating sources that would normally be within the array

2.9

attenuation

decrease in AE amplitude per unit distance, normally expressed in dB per unit length

2.10

average signal level

rectified, time-averaged AE logarithmic signal, measured on the AE amplitude logarithmic scale and reported in dB_{AF} units (where 0 dB_{AF} refers to 1 μ V at the preamplifier input)

2.11

channel, acoustic emission

acoustic emission channel

assembly of a sensor, preamplifier or impedance matching transformer, filters, secondary amplifier or other instrumentation as needed, connecting cables, and detector or processor

A channel for examining fiberglass reinforced plastic (FRP) may utilize more than one sensor with associated electronics. Channels may be processed independently or in predetermined groups having similar sensitivity and frequency standards.iteh.ai) characteristics.

2.12

count, acoustic emission

ISO 12716:2001

ttps://standards.iteh.ai/catalog/standards/sist/f881bf2b-7755-4c48-ba0facoustic emission count cbfa5eda18e0/iso-12716-2001

count, ring-down

ring-down count

emission count

number of times the acoustic emission signal exceeds a preset threshold during any selected portion of a test

count, event

event count

 N_{e}

number obtained by counting each discerned acoustic emission event once

count rate, acoustic emission

acoustic emission count rate emission rate count rate

N

time rate at which emission counts occur

2.15

couplant

material used at the structure-to-sensor interface to improve the transmission of acoustic energy across the interface during acoustic emission monitoring

 dB_{AF}

logarithmic measure of acoustic emission signal amplitude, referenced to 1 μV

Signal peak amplitude (dB_{AF}) = 20 $\log_{10}(A_1/A_0)$

where

 A_0 is equal to 1 μ V at the sensor output (before amplification);

 A_1 is the peak voltage of the measured acoustic emission signal.

Acoustic emission reference scale:

dB _{AE} value	Voltage at sensor output
0	1 μV
20	10 μV
40	100 μV
60	1 mV
80	10 mV
100	100 mV

2.17 dead time

iTeh STANDARD PREVIEW

instrumentation dead time

instrumentation dead time any interval during data acquisition when the instrument or system is unable to accept new data for any reason

ISO 12716:2001 2.18

distribution, amplitude cumulative (acoustic emission) (2b-7755-4c48-ba0f-

cumulative (acoustic emission) amplitude distribution e0/iso-12716-2001

F(V)

number of acoustic emission events with signals that exceed an arbitrary amplitude as a function of amplitude V

2.19

distribution, threshold crossing, cumulative (acoustic emission)

 $F_{\mathsf{t}}(V)$

cumulative (acoustic emission) threshold crossing distribution

number of times the acoustic emission signal exceeds an arbitrary threshold as a function of the threshold voltage V

distribution, differential (acoustic emission) amplitude

differential (acoustic emission) amplitude distribution

f(V)

number of acoustic emission events with signal amplitudes between amplitudes of V and $V + \Delta V$ as a function of the amplitude V where f(V) is the absolute value of the derivative of the cumulative amplitude distribution F(V)

2.21

distribution, differential (acoustic emission) threshold crossing

differential (acoustic emission) threshold crossing distribution $f_{\mathsf{t}}(V)$

number of times the acoustic emission signal waveform has a peak between thresholds V and $V + \Delta V$ as a function of the threshold V where $f_t(V)$ is the absolute value of the derivative of the cumulative threshold crossing distribution $F_t(V)$

3 © ISO 2001 - All rights reserved

distribution, logarithmic (acoustic emission) amplitude

logarithmic (acoustic emission) amplitude distribution

g(V)

number of acoustic emission events with signal amplitudes between V and αV (where α is a constant multiplier) as a function of the amplitude

NOTE This is a variant of the differential amplitude distribution, appropriate for logarithmically windowed data.

2.23

dynamic range

difference, in decibels, between the overload level and the minimum signal level (usually fixed by one or more of the noise levels, low-level distortion, interference or resolution level) in a system or sensor

2.24

effective velocity

velocity calculated on the basis of arrival times and propagation distances determined by artificial AE generation and used for computed location

2.25

emission, burst

burst emission

qualitative description of the discrete signal related to an individual emission event occurring within the material

NOTE Use of the term "burst emission" is recommended only for describing the qualitative appearance of emission signals. Figure 1 shows an oscilloscope trace of burst emission at two different sweep rates.

2.26

(standards.iteh.ai)

emission, continuous

continuous emission

qualitative description of the sustained signal level produced by rapidly occurring acoustic emission events

NOTE Use of the term "continuous emission" is recommended only for describing the qualitative appearance of emission signals. Figure 2 shows oscilloscope traces of a continuous emission signal at two different sweep rates.

2.27

energy, acoustic emission event

acoustic emission event energy total elastic energy released by an emission event

2.28

evaluation threshold

threshold value used for analysis of the examination data

NOTE Data may be recorded with a system examination threshold lower than the evaluation threshold. For analysis purposes, dependence of measured data on the system examination threshold must be taken into consideration.

2.29

event, acoustic emission (emission event)

acoustic emission event

local material change giving rise to acoustic emission

2.30

examination area

that portion of a structure being monitored using acoustic emission

2.31

examination region

that portion of the test article evaluated using acoustic emission technology

Felicity effect

presence of detectable acoustic emission at a fixed predetermined sensitivity level at stress levels below those previously applied

2.33

Felicity ratio

ratio of the stress at which the Felicity effect occurs to the previously applied maximum stress

NOTE The fixed sensitivity level will usually be the same as was used for the previous loading or test.

2.34

floating threshold

any threshold with amplitude established by a time average measure of the input signal

2.35

hit

any signal that exceeds the threshold and causes a system channel to accumulate data

2.36

interval, arrival time

arrival time interval

 Δt_{ii}

time interval between the detected arrivals of an acoustic emission wave at the *i*th and *j*th sensors of a sensor array

iTeh STANDARD PREVIEW

2.37

Kaiser effect

(standards.iteh.ai)

absence of detectable acoustic emission at a fixed sensitivity level, until previously applied stress levels are exceeded ISO 12716:2001

https://standards.iteh.ai/catalog/standards/sist/f881bf2b-7755-4c48-ba0f-cbfa5eda18e0/iso-12716-2001

2.38

location, cluster

location method based upon a specified amount of AE activity located within a specified length or area, e.g. 5 events within 12 linear units (e.g. cm) or 12 square units (e.g. cm²)

2.39

location, computed

adaptive location

source location method based on algorithmic analysis of the difference in arrival times among sensors

NOTE Several approaches to computed location are used, including linear location, planar location, three dimensional location and adaptive location.

2.39.1

linear location

one-dimensional source location requiring two or more channels

2.39.2

planar location

two-dimensional source location requiring three or more channels

2.39.3

3-D location

three-dimensional source location requiring five or more channels

2.39.4

adaptive location

source location by iterative use of simulated sources in combination with computed location

© ISO 2001 – All rights reserved