INTERNATIONAL STANDARD

Second edition 2008-10-15

Biological evaluation of medical devices —

Part 7: **Ethylene oxide sterilization residuals**

Évaluation biologique des dispositifs médicaux **iTeh STPartie 7: Résidus de stérilisation à l'oxyde d'éthylène (standards.iteh.ai)**

<u>ISO 10993-7:2008</u> https://standards.iteh.ai/catalog/standards/sist/4f4548c0-a304-4308-b2f7a3514aaadb9f/iso-10993-7-2008

Reference number ISO 10993-7:2008(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10993-7:2008</u> https://standards.iteh.ai/catalog/standards/sist/4f4548c0-a304-4308-b2f7a3514aaadb9f/iso-10993-7-2008

COPYRIGHT PROTECTED DOCUMENT

© ISO 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Contents

Foreword	iv
Introduction	vi
1 Scope	
2 Normative references	1
3 Terms and definitions	1
 4 Requirements	2 2 3
 5 Product release	10 10
Annex A (normative) Evaluation of gas chromatograms	12
Annex B (informative) Gas chromatographic determination for EO and ECH Annex C (informative) Flowchart and guidance for the application of this part of ISO 10993 series of standards to the determination of EO and ECH residuals in medical devices	15
Annex D (informative) _{tr} Factors influencing product residual 8:0-n304-4308-6217	26
Annex E (informative) Extraction conditions for determination of residual EO	
Annex F (informative) Rationale for the provisions of this part of ISO 10993	29
Annex G (informative) Establishment of allowable limits for EO	33
Annex H (informative) Establishment of allowable limits for ECH	50
Annex I (informative) Establishment of allowable limits for EG	59
Annex J (informative) Preparation of EO and ECH standards	63
Annex K (informative) Ethylene oxide residue measuring methods Bibliography	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 10993-7 was prepared by Technical Committee ISO/TC 194, Biological evaluation of medical devices.

This second edition cancels and replaces the first edition (ISO 10993-7:1995) which has been technically revised.

ISO 10993 consists of the following parts, under the general title *Biological evaluation of medical devices*:

- Part 1: Evaluation and testing within a risk management system https://standards.iteh.a/catalog/standards/sist/4t4548c0-a304-4308-b2f7-
- Part 2: Animal welfare requirements a3514aaadb9f/iso-10993-7-2008
- Part 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity
- Part 4: Selection of tests for interactions with blood
- Part 5: Tests for in vitro cytotoxicity
- Part 6: Tests for local effects after implantation
- Part 7: Ethylene oxide sterilization residuals
- Part 9: Framework for identification and quantification of potential degradation products
- Part 10: Tests for irritation and skin sensitization
- Part 11: Tests for systemic toxicity
- Part 12: Sample preparation and reference materials
- Part 13: Identification and quantification of degradation products from polymeric medical devices
- Part 14: Identification and quantification of degradation products from ceramics
- Part 15: Identification and quantification of degradation products from metals and alloys

- Part 16: Toxicokinetic study design for degradation products and leachables
- Part 17: Establishment of allowable limits for leachable substances
- Part 18: Chemical characterization of materials
- Part 19: Physico-chemical, morphological and topographical characterization of materials [Technical Specification]
- Part 20: Principles and methods for immunotoxicology testing of medical devices [Technical Specification]

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10993-7:2008</u> https://standards.iteh.ai/catalog/standards/sist/4f4548c0-a304-4308-b2f7a3514aaadb9f/iso-10993-7-2008

Introduction

Requirements for the development, validation and routine control of an ethylene oxide sterilization process for medical devices are given in International Standards developed by ISO/TC 198. Certain requirements relating to medical devices for biological testing, selection of tests, and the allocation of devices to categories are dealt with in a variety of International Standards developed by ISO/TC 194. The specific requirement for ethylene oxide and other sterilization process residuals was referred to ISO/TC 194. Other International Standards delineate particular requirements for biological testing for specific products.

As noted in the introduction to ISO 11135-1:2007, when determining the suitability of ethylene oxide (EO) for sterilization of medical devices, it is important to ensure that the levels of residual EO, ethylene chlorohydrin (ECH) and ethylene glycol (EG) pose a minimal risk to the patient in normal product use. Therefore, it is important that the use of alternative materials and sterilization processes be considered during product design and development. EO is known to exhibit a number of biological effects. In the development of this part of ISO 10993, consideration was given to these effects, which include irritation, organ damage, mutagenicity and carcinogenicity in humans and animals, and reproductive effects in animals. Similar consideration was given to the harmful effects of ECH and EG. In practice, for most devices, exposure to EO and ECH is considerably lower than the maximum values specified in this part of ISO 10993.

Moreover, when the choice for EO sterilization has been made, irrespective of the provisions of this part of ISO 10993, exposure to EO residues should be minimized. Requirements herein are in addition to the biological evaluation and testing requirements, combined with the EO-sterilization process residue limits, form the justification that an EO-sterilized device is acceptable for use. Maximum allowable residues for ethylene chlorohydrin (ECH), when ECH has been found to be present in medical devices sterilized with EO, are also specified. Local effects (e.g., irritation) have been considered and are incorporated in the tolerable contact limit (TCL) as given in (413.5.2 and Annex G for EO, and in 413.5.3 and Annex H for ECH.

Biological evaluation of medical devices —

Part 7: **Ethylene oxide sterilization residuals**

1 Scope

This part of ISO 10993 specifies allowable limits for residual ethylene oxide (EO) and ethylene chlorohydrin (ECH) in individual EO-sterilized medical devices, procedures for the measurement of EO and ECH, and methods for determining compliance so that devices may be released. Additional background, including guidance and a flowchart showing how this document is applied, are also included in the informative annexes.

EO-sterilized devices that have no patient contact (e.g., *in vitro* diagnostic devices) are not covered by this part of ISO 10993.

NOTE This part of ISO 10993 does not specify limits for ethylene glycol (EG).

2 Normative references STANDARD PREVIEW

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.10993-7:2008

https://standards.iteh.ai/catalog/standards/sist/4f4548c0-a304-4308-b2f7-

ISO 10993-1:—¹⁾, Biological evaluation of medical devices 2008 Part 1: Evaluation and testing within a risk management process

ISO 10993-3, Biological evaluation of medical devices — Part 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity

ISO 10993-10, Biological evaluation of medical devices — Part 10: Tests for irritation and delayed-type hypersensitivity

ISO 10993-12, Biological evaluation of medical devices — Part 12: Sample preparation and reference materials

ISO 10993-17:2002, Biological evaluation of medical devices — Part 17: Establishment of allowable limits for leachable substances

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 10993-1, ISO 10993-17 and the following apply.

3.1

simulated-use extraction

extraction to demonstrate compliance with the requirements of this part of ISO 10993, by evaluating residue levels available to the patient or user from devices during the routine use of a device with water extraction to simulate product use

¹⁾ To be published. (Revision of ISO 10993-1:2003)

3.2

exhaustive extraction

extraction until the amount of EO or ECH in a subsequent extraction is less than 10 % of that detected in the first extraction, or until there is no analytically significant increase in the cumulative residue levels detected

NOTE As it is not possible to demonstrate the exhaustive nature of residual recovery, the definition of exhaustive extraction adopted is as above.

4 Requirements

4.1 General

NOTE Information on the derivation of the limits in this part of ISO 10993 as well as other important background information and guidance relevant to the use of this document is contained in the informative annexes.

This clause specifies maximum allowable residues for ethylene oxide (EO) for each individual medical device sterilized with EO. As noted in the introduction to ISO 11135-1:2007, when determining the suitability of EO for sterilization of medical devices, it is important to ensure that the levels of residual EO, ethylene chlorohydrin (ECH) and ethylene glycol (EG) pose a minimal risk to the patient in normal product use. Moreover, when the choice for EO sterilization has been made, irrespective of the provisions of this standard, exposure to EO residues should be minimized. Maximum allowable residues for ECH, when ECH has been found to be present in medical devices sterilized with EO, are also specified. Local effects (e.g., irritation) have been considered and are incorporated in the tolerable contact limit (TCL) as discussed in 4.3.5.2 and Annex G for EO, and 4.3.5.3 and Annex H for ECH. No device limits are specified for EG because a risk assessment (Annex I) indicates that calculated allowable levels are higher than those likely to occur in a medical device. However, the potential exists for acute haemodynamic and haemolytic effects to occur following rapid intravenous administration of hyperosmolar compounds like EG. Ethylene oxide sterilization of medical devices would not be expected to produce hyperosmolar solutions. Methods for the determination of EO and ECH are given in 4.4.

The requirements in this part of ISO 10993 are in addition to the biological testing requirements set out in ISO 10993-1. For devices sterilized using ethylene oxide, attention shall be paid in particular to ISO 10993-3 and ISO 10993-10. All applicable requirements of ISO 10993-1 shall take into account the EO residual level at the time of release for each individually designed medical device.

Results of the biological assessment of the device may dictate more stringent limits than those specified in 4.3, which are designed to protect against systemic effects.

4.2 Categorization of devices

In establishing the maximum daily doses of EO and ECH that a medical device is allowed to deliver to patients, devices shall be categorized according to the duration of contact.

Devices shall be placed into one of three exposure categories in accordance with ISO 10993-1:--, 5.3:

- a) limited exposure (A) devices whose cumulative single, multiple or repeated use or contact is up to 24 h;
- b) prolonged exposure (B) devices whose cumulative single, multiple, or repeated long-term use or contact is likely to exceed 24 h but not 30 d;
- c) permanent contact (C) devices whose cumulative single, multiple or repeated long-term use or contact exceeds 30 d.

If a material or device can be placed in more than one duration category, the more rigorous testing and/or evaluation considerations should apply. With multiple exposures, the decision into which category a device is placed should take into account the potential cumulative effect, bearing in mind the period of time over which these exposures occur.

NOTE As it is applied in this part of ISO 10993, "multiple use" is defined to mean repeated use of the same device type, e.g. dialyser cartridges.

4.3 Allowable limits

4.3.1 General

For each medical device, the maximum allowable doses of EO and ECH delivered to patients shall not exceed the values given below for the exposure category that the device has been placed into in accordance with 4.2.

The limits for permanent contact and prolonged exposure devices are expressed as maximum average daily doses. These limits carry additional constraints for the first 24 h of the exposure period and, in the case of the permanent contact devices, for the first 30 days. These constraints place limitations on the amount of EO and ECH that can be delivered to the patient during these early time periods. If data are available, consideration should be given for proportioning the limits downward if multiple devices with the residue of concern are used at one time, or proportioning the limits upward when device use is only for a part of the exposure period of concern. These concomitant exposure factors (CEF) and proportional exposure factors (PEF) are given in ISO 10993-17. The procedure that was used to establish the allowable limits is described in Annex G for EO, in Annex H for ECH, and the rationale for considering the establishment of allowable limits for EG is described in Annex I.

4.3.2 Permanent contact devices

The average daily dose of EO to patient shall not exceed 0,1 mg/d. In addition, the maximum EO dose shall not exceed:

- 4 mg in the first 24 h;
- 60 mg in the first 30 d; eh STANDARD PREVIEW
- 2,5 g in a lifetime.

The average daily dose of ECH to patient shall not exceed 0,4 mg/d. In addition, the maximum ECH dose https://standards.iteh.ai/catalog/standards/sist/4f4548c0-a304-4308-b2f7-

— 9 mg in the first 24 h;

a3514aaadb9f/iso-10993-7-2008

(standards.iteh.ai)

- 60 mg in the first 30 d;
- 10 g in a lifetime.

4.3.3 Prolonged exposure devices

The average daily dose of EO to patient shall not exceed 2 mg/d. In addition, the maximum EO dose shall not exceed:

- 4 mg in the first 24 h;
- 60 mg in the first 30 d.

The average daily dose of ECH to patient shall not exceed 2 mg/d. In addition, the maximum ECH dose shall not exceed:

- 9 mg in the first 24 h;
- 60 mg in the first 30 d.

4.3.4 Limited exposure devices

The average daily dose of EO to patient shall not exceed 4 mg.

The average daily dose of ECH to patient shall not exceed 9 mg.

4.3.5 Tolerable contact limits for surface contacting devices and implants

4.3.5.1 Overview

The tolerable contact limit (TCL) is expressed in units of micrograms per square centimetre for EO and milligrams per square centimetre for ECH. The unit of square centimetre represents the surface area of the patient-device interface.

NOTE The intent of this subclause is to prevent localized irritation due to EO or ECH released from the device.

4.3.5.2 Tolerable contact limit for EO

Either the EO TCL for surface contacting devices and implants shall not exceed 10 μ g/cm² or it shall exhibit negligible irritation as specified in ISO 10993-10.

4.3.5.3 Tolerable contact limit for ECH for surface contacting devices

Either the ECH TCL for surface contacting devices and implants shall not exceed 5 mg/cm² or it shall exhibit negligible irritation as specified in ISO 10993-10.

4.3.6 Special situations

For multi-device systems the limits shall apply to each individual patient-contact device.

Residue of EO in intraocular lenses shall not exceed 0.5 ug EO per lens per day, or 1,25 µg per lens. Prorate limits for other intraocular devices are set on the basis of the mass of the device, with the mass of an intraocular lens taken as 20 mg. The acceptability of ECH levels in intraocular devices made from viscoelastic materials that contain chlorine may need to be evaluated, as the level of ECH that results in ocular toxicity is about four times greater than the corresponding EQ level 03-72008

For blood cell separators used in patient and donor blood collection the maximum allowable dose of EO is 10 mg and the maximum allowable dose of ECH shall not exceed 22 mg.

For blood oxygenators and blood separators, the maximum allowable dose of EO to patient is 60 mg and the maximum allowable dose of ECH shall not exceed 45 mg.

For devices used in cardiopulmonary bypass procedures, the maximum allowable limits shall be 20 mg for EO and 9 mg for ECH.

For extracorporeal blood purification devices, the EO and ECH limits specified shall be 4,6 mg/device, but the allowable EO dose for a lifetime may be exceeded.

For drapes that are intended to contact only intact skin, the maximum allowable limits shall be the TCL of $10 \,\mu\text{g/cm}^2$ for EO and $5 \,\text{mg/cm}^2$ for ECH, or the drapes shall exhibit negligible irritation as specified in ISO 10993-10.

NOTE The rationale for specifying EO limits for certain devices that are at variance with the general requirements appears in Annex F.

A flowchart providing guidance for the application of this part of ISO 10993 to the determination of EO residuals in medical devices is presented in Annex C.

4.4 Determination of EO and ECH residuals

4.4.1 General

4.4.1.1 Procedure

The procedure for determining compliance with 4.3 consists of extracting the residue from samples, determining the amount of residue, determining the contact surface of the device, and analysing and interpreting the data.

DANGER — Analysts and others who obtain samples should perform all work involving the use of the chemicals and solvents required for these methods in a fume cupboard whilst wearing appropriate protective clothing, and should review the Material Safety Data information for each chemical prior to such use. Healthcare workers using EO-sterilized medical devices shall take appropriate precautions to protect against exposure to residues, which may be required by local occupational health and safety regulations.

4.4.1.2 Ethylene oxide

This is a flammable gas that is irritating to body surfaces and highly reactive. It is mutagenic under many conditions, has fetotoxic and teratogenic properties, can adversely effect testicular function and can produce injury to many organ systems in the body. In cancer studies in animals, inhalation exposure produced several types of neoplastic changes including leukaemia, brain tumours and mammary tumours while ingestion or subcutaneous administration produced tumours only at the site of contact. One investigator has reported higher cancer and mortality rates in some subpopulations of exposed workers. However, the results of several studies in workers have shown even weaker associations. See References [177], [178] and [181]. In 1994 the International Agency for Research on Cancer (IARC) reclassified EO as a human carcinogen (class 1) based mainly on its mechanism of action. See Reference [75].

ISO 10993-7:2008

Ethylene chlorohydrin.iteh.ai/catalog/standards/sist/4f4548c0-a304-4308-b2f7-4.4.1.3

This is a flammable liquid that is irritating to body surfaces, acutely toxic and readily absorbed through the skin in toxic amounts. It has weak mutagenic potential, has some potential to produce fetotoxic and teratogenic changes and can produce injury to several organ systems in the body including lungs, kidneys, central nervous system and cardiovascular system. It was negative in cancer bioassays in animals.

4.4.2 Determination of residue

A valid method of extraction and measurement shall be used to determine the amount of EO and, where necessary, ECH delivered to the patient.

If ECH is not detected based on the results of analyses performed using the methods given in either K.4.2 or K.4.7, no further monitoring for ECH is required.

Many gas chromatography (GC) methods that use a capillary column instead of a packed column will produce NOTE EO, ECH and EG results during a single sample run.

The guiding principle in selecting appropriate extraction methods (4.4.6) for the quantitative determination of EO and, where necessary, ECH is the evaluation of the dose to the patient in order to show compliance with the requirements set out in 4.3.

Where residues are shown to be within the requirements for products tested by exhaustive extraction, there is no need to further challenge the device by simulated-use extraction, provided all applicable limits in 4.3 are met. When exhaustive extraction is used, particular attention shall be paid to the limits expressed for the first 24 h and for the first 30 days in 4.3.

Many analytical methods for these EO-sterilization residuals have been described and are reviewed in the Bibliography. However, the enormous diversity of materials and methods of construction of sterile medical devices may, in certain cases, still present problems in determining residual EO and ECH levels using the methods given in the Bibliography. Therefore, any method that has been shown to be analytically sound (i.e. demonstrated accuracy, precision, linearity, sensitivity, and selectivity) may be used, provided that it has been validated. Annex A contains general validation requirements for gas chromatographic methods.

4.4.3 Product sampling and sample "blank"

4.4.3.1 Product sampling

Samples to be used for residual analysis shall be selected in such a manner as to be truly representative of the product. When selecting samples, attention shall be given to the many factors described in Annex D. Since many of these factors influence not only the initial levels of residuals in device components but also the rate of residue dissipation, they shall also be considered when test samples are drawn from a processed load and sent to the laboratory for analysis. Removal of the product samples from the processed load soon after a sterilization cycle is completed and shipment to a laboratory far from the sterilization site or storage in the laboratory for later analysis can jeopardize correlations of residual levels on the samples with those on the rest of the load. Moreover, if samples cannot be drawn from the load and handled so that the effect on aeration conditions for the sample will be negligible, an experiment to establish the relationship between the sample aeration and load aeration at various seasons of the year shall be carried out.

Precautions shall be taken to minimize or control the effects of laboratory conditions on the rate of aeration for test samples that have been removed from a product load (see D.1.5). In addition, operator and analyst safety shall be ensured. Samples should remain with the product load until the day of analysis or until test samples are retrieved and immediately frozen. The time between removal of samples from a controlled aeration area and the beginning of extraction should be held to a minimum. Samples shall be sealed, shipped and stored frozen when analysis is delayed. Samples shall be shipped on dry ice on overnight delivery. Dry ice shall remain in the shipping container throughout the shipment and be present when the package is opened in the laboratory. Test samples may also be taken directly from the product load at the desired aeration interval and immediately placed into a headspace vial, which is sealed and then shipped to the laboratory for analysis. As an alternative, samples may be extracted and the extraction fluid shipped to the analytical laboratory for analysis. If the extraction fluid is water, then shipment shall be done such that the fluid is kept at ice-cold temperatures (< 10 °C) until arrival. Testing should be carried out to measure hydrolysis of EO to EG.

Samples to be analysed shall be placed in a fume cupboard and removed from the packaging. Samples shall be prepared according to any applicable pre-use instructions in the product labelling. Extractions shall be started as soon as possible after the device has been removed from the packaging or pre-use preparations have been completed.

4.4.3.2 Sample "blank"

To ensure that no other sample matrix components with the same retention time as any of the residues being determined are present, a "blank" sample shall be evaluated for the possible presence of such interferences by the extraction of a non-sterilized sample using the identical procedure being applied to the EO-sterilized samples. In the event of materials being extracted from such a "blank" with conflicting or overlapping retention times in the GC analysis, chromatographic conditions shall be modified to separate the interfering peak from the analyte peak, or an alternative analytical procedure shall be used.

4.4.4 Sample/fluid ratios

The volume of fluid used to extract residues from devices, or representative sections of them, shall be sufficient to maximize extraction efficiency while maintaining detection sensitivity. The nature and size of the device sample therefore determines what constitutes the optimal fluid volume for extraction. Therefore, to maximize analytical sensitivity, a minimum amount of extraction fluid should be used depending on the extraction method required and size of the sample. Devices composed of highly absorbent materials or those from which residues are extracted by filling may require sample/extraction fluid ratios reflecting increased fluid volume. In any case, sample/extraction fluid ratios shall not undermine detection sensitivity.

4.4.5 Extraction time and conditions

The aim of product extraction is to indicate the worst-case amount that could be delivered to the patient in actual use of the device: on a daily basis for limited exposure items; on a daily and up to monthly basis for prolonged exposure items; on a daily, monthly, and up to a lifetime basis for permanent contact items. As indicated in Annexes E and F, exhaustive extraction as described below can be a useful alternative for permanent contact devices, provided that shorter-term constraints are ensured.

4.4.6 Product extraction

4.4.6.1 Overview

There are two basic extraction methods used for the determination of EO-sterilization residuals in medical devices: simulated-use extraction, which is the reference method; exhaustive extraction, which represents an acceptable alternative in certain situations. The choice of extraction method shall be based on the intended use of the device. Examples of suggested extraction methods are shown in Annex K.

The extraction method chosen shall represent the intended use of the product with the greatest challenge to the patient and not solely expeditious analysis or to minimize the apparent concentration of residuals.

Extraction temperatures and times shall be determined based on the nature of the patient's exposure and the patient's duration of contact with the device as described in 4.2 and 4.3. See ISO 10993-12 for extraction temperatures.

The analyst is cautioned that for certain devices, simulated-use extraction may result in relatively large elution volumes. Should this occur it might significantly increase the limit of detection for the residual material to the point where a determination of compliance with this part of ISO 10993 is compromised.

Small devices shall be extracted in a suitable container. When a device is too large to be extracted in its entirety, it may be necessary to extract several representative portions of the device components in order to ensure confidence in the data derived ai/catalog/standards/sist/4f4548c0-a304-4308-b2f7-

a3514aaadb9f/iso-10993-7-2008

These representative portions may be selected in one of two ways. If several varied materials are used, the proportion of each component, as compared with the total sample mass, should parallel the ratio of that component to the total mass of the device being tested. An alternative method would be to select one of the components for testing, subsequent to an evaluation demonstrating that it represented the worst case with regard to residual content. The method chosen shall be validated.

4.4.6.2 Simulated-use extraction (reference method)

Simulated-use aqueous extraction is the reference method in that it is the only method that produces results directly comparable to the limits specified in 4.3. These limits are expressed in terms of delivered dose of EO and ECH to patients.

Since it is necessary to evaluate the residue levels available to the patient, or other end user, from devices in routine use, extraction methods that simulate use are required. Simulated-use extraction shall be carried out under conditions that provide the greatest challenge to the intended use.

For example, many blood-contacting and parenteral devices can be extracted with water by filling or flushing the blood or fluid path (whichever is appropriate). Samples shall be extracted for a time equivalent to or exceeding the maximum time for single use, and at temperatures that provide the greatest realistic simulated challenge.

To determine the dose of EO and, where necessary, ECH delivered to the patient or user over the course of normal product use, simulated-use aqueous extraction procedures are used.

NOTE The amounts of EO (or ECH) extracted by simulating normal product use are not necessarily similar to the total product residual content.

Water (see [92]) is commonly used for the recovery of residual EO, ECH (and EG if there is any concern about hydrolysis of EO) in simulated-use extractions. Water is used for elution of EO residuals from the sample rather than to dissolve the sample material itself. If the intent is to simulate product use by filling the device, the device should be filled so as to eliminate any air pockets: extract devices that are wholly or partially in contact with the body during use at 37 °C (body temperature); extract devices having no immediate body contact during use (e.g., hypodermic syringes) at 25 °C (room temperature). See also ISO 10993-12. If the assay is not performed immediately, the extract should be decanted from the sample and sealed in a poly-(tetrafluoroethylene) (PTFE)-lined, septum-capped vial. The headspace in the vial of any standard solution or extract shall be less than 10 % of the total volume. The extract can be stored in the refrigerator for several days (see Annex F) but, where water extraction is used, caution shall be taken, as EO may convert to EG or ECH (or both) during the extraction period as well as during storage of the extract (see [35]). The analyst shall evaluate the possibility of this conversion to EG and/or ECH at the analysis site when extracting the sample with water.

4.4.6.3 Exhaustive extraction (acceptable alternative method)

4.4.6.3.1 Overview

Exhaustive extraction represents an acceptable alternative and can provide useful information. It produces results that would tend to represent a dose greater than or equal to one the patient may receive. Because such an extraction precludes measurement of dose as a function of time, it does not ensure that the mass of residue is not delivered to the patient on the first day or during the first month of exposure. However, when all applicable limits in 4.3 are met and residues are shown to be within the requirements for products tested by exhaustive extraction, there is no need to further challenge the device by simulated-use extraction. When exhaustive extraction is used, particular attention shall be paid to the limits expressed for the first 24 h and for the first 30 d in 4.3.

Exhaustive extraction methods are intended to recover the entire residual content of a device. For EO determination, extraction procedures used include thermal extraction followed by headspace gas analysis, solvent extraction procedures, with either headspace gas analysis of the solvent extract, chromatography of the solvent extract, or preparation of the bromohydrin derivative of 4EO which is determined using a more sensitive GC detector such as an electron capture detector, 10993-7-2008

4.4.6.3.2 Residual ethylene oxide

A variety of extraction fluids has been used for the exhaustive recovery of residual EO. Thermal desorption followed by headspace gas analysis, as described in K.4.3, is an example of a procedure that does not use an extraction fluid. When conducted as described, headspace methods are considered exhaustive since they are designed to recover all of the residual EO from the sample. However, headspace methods may not be feasible or preferred for intact testing of large or complex devices. The analyst shall exercise caution in the execution of headspace methods when evaluating residue levels in polymer materials such as poly-(methylmethacrylate) to ensure total recovery of EO.

For solvent extraction procedures, selection of a suitable extraction fluid depends on the material composition of the device and its components. To facilitate complete recovery of EO from the sample, fluids that dissolve the sample material are generally preferred in an exhaustive extraction, provided that interfering substances are not also put into solution by the procedure. Solvent extraction procedures that are combined with headspace gas analysis are described in K.4.4 and such procedures may be able to separate EO from co-extracted interfering chemicals from the sample matrix. Several extraction fluids have been evaluated through interlaboratory comparison testing, see References [112], [113] and [114].

Prudent analytical procedure dictates that, in the initial analysis of a given material, more than one extraction procedure shall be used to validate quantitative recovery whenever an exhaustive extraction is to be performed. For devices containing a relatively small amount of residual EO, the commonly used methods may not be capable of extracting these small amounts, even after relatively long extraction times.

4.4.6.3.3 Residual ethylene chlorohydrin

Water is typically used to extract residual ECH from medical devices using methods similar to those described for determining residual EO.

4.4.7 Data analysis and interpretation

4.4.7.1 Calculation of amount of residue extracted

The concentration of residue observed in the extracts, C_e , is converted to the amount delivered to a patient, in milligrams, M_d , as follows.

Residue extracted by simulated use may be calculated as follows:

$$M_{d} = \sum_{1}^{n} (C_{en} \times V_{en})$$
⁽¹⁾

Residue extracted by exhaustive extraction may be calculated as follows:

$$M_{\rm d} = \sum_{1}^{n} (C_{\rm en} \times V_{\rm en}) \times \frac{m_{\rm d}}{m_{\rm s}}$$
(2)

where

iTeh STANDARD PREVIEW

- *M*_d is the extract residue, in milligrams; (standards.iteh.ai)
- *n* is the number of extractions;
- $C_{\rm e}$ is the amount of EQ in milligrams per millilitre of extract as derived from the standard curve;
- $V_{\rm e}$ is the extract volume, in millilitres;
- m_{d} is the entire device mass, in grams;
- $m_{\rm s}$ is the mass of sample, in grams.

NOTE This applies only if a portion of the device is extracted.

4.4.7.2 Calculation of average delivered dose, M_{add}, for comparison to allowable limits in 4.3

For permanent contact devices, the average delivered dose, $M_{\rm add}$, in milligrams per day, is as follows:

$$M_{\rm add} = \frac{M_{\rm d}}{25\,000}$$
(3)

where

25 000 is the number of days per lifetime;

 $M_{\rm d}$ is the extract residue, in milligrams.

Permanent contact devices shall also meet the prolonged exposure and limited exposure limits as calculated below.