

SLOVENSKI STANDARD SIST EN ISO 9080:2012

01-december-2012

Nadomešča: SIST EN ISO 9080:2003

Cevni in kanalski sistemi iz polimernih materialov - Ugotavljanje dolgotrajne hidrostatične trdnosti termoplastičnih materialov za cevi z metodo ekstrapolacije (ISO 9080:2012)

Plastics piping and ducting systems - Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation (ISO 9080:2012)

iTeh STANDARD PREVIEW

Kunststoff-Rohrleitungs- und Schutzrohrsysteme - Bestimmung des Zeitstand-Innendruckverhaltens von thermoplastischen Rohrwerkstoffen durch Extrapolation (ISO 9080:2012)

SIST EN ISO 9080:2012

https://standards.iteh.ai/catalog/standards/sist/a84383b0-3c53-430d-88b8-

Systèmes de canalisations et de gaines en matières plastiques - Détermination de la résistance hydrostatique à long terme des matières thermoplastiques sous forme de tubes par extrapolation (ISO 9080:2012)

Ta slovenski standard je istoveten z: EN ISO 9080:2012

<u>ICS:</u>

23.040.20 Cevi iz polimernih materialov Plastics pipes

SIST EN ISO 9080:2012

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 9080:2012 https://standards.iteh.ai/catalog/standards/sist/a84383b0-3c53-430d-88b8-8cf9f7665da2/sist-en-iso-9080-2012

SIST EN ISO 9080:2012

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 9080

October 2012

ICS 23.040.20

Supersedes EN ISO 9080:2003

English Version

Plastics piping and ducting systems - Determination of the longterm hydrostatic strength of thermoplastics materials in pipe form by extrapolation (ISO 9080:2012)

Systèmes de canalisations et de gaines en matières plastiques - Détermination de la résistance hydrostatique à long terme des matières thermoplastiques sous forme de tubes par extrapolation (ISO 9080:2012) Kunststoff-Rohrleitungs- und Schutzrohrsysteme -Bestimmung des Zeitstand-Innendruckverhaltens von thermoplastischen Rohrwerkstoffen durch Extrapolation (ISO 9080:2012)

This European Standard was approved by CEN on 6 October 2012.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav, Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovakia, Slovakia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents

Page

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 9080:2012 https://standards.iteh.ai/catalog/standards/sist/a84383b0-3c53-430d-88b8-8cf9f7665da2/sist-en-iso-9080-2012

Foreword

This document (EN ISO 9080:2012) has been prepared by Technical Committee ISO/TC 138 "Plastics pipes, fittings and valves for the transport of fluids" in collaboration Technical Committee CEN/TC 155 "Plastics piping systems and ducting systems" the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2013, and conflicting national standards shall be withdrawn at the latest by April 2013.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 9080:2003.

According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

iTeh STANDARD PREVIEW

(stan Endorsement-notice)

The text of ISO 9080:2012 has been approved by CEN as a EN ISO 9080:2012 without any modification.

https://standards.iteh.ai/catalog/standards/sist/a84383b0-3c53-430d-88b8-8cf9f7665da2/sist-en-iso-9080-2012

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 9080:2012 https://standards.iteh.ai/catalog/standards/sist/a84383b0-3c53-430d-88b8-8cf9f7665da2/sist-en-iso-9080-2012

SIST EN ISO 9080:2012

INTERNATIONAL STANDARD

ISO 9080

Second edition 2012-10-15

Plastics piping and ducting systems — Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation

Systèmes de canalisations et de gaines en matières plastiques — Détermination de la résistance hydrostatique à long terme des matières iTeh STANDARD PRE de tubes par extrapolation

(standards.iteh.ai)

SIST EN ISO 9080:2012 https://standards.iteh.ai/catalog/standards/sist/a84383b0-3c53-430d-88b8-8cf9f7665da2/sist-en-iso-9080-2012

Reference number ISO 9080:2012(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 9080:2012 https://standards.iteh.ai/catalog/standards/sist/a84383b0-3c53-430d-88b8-8cf9f7665da2/sist-en-iso-9080-2012

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

ISO 9080:2012(E)

Page

Contents

Forewo	ord	iv
Introdu	ntroductionv	
0.1	General	v
0.2	Principles	v
0.3	Use of the methods	vi
1	Scope	1
2	Normative references	. 1
3	Terms and definitions	. 1
4 4.1 4.2	Acquisition of test data Test conditions Distribution of internal pressure levels and time ranges	3 3 3
5 5.1 5.2 5.3 5.4	Procedure Data gathering and analysis Extrapolation time factors for polyolefins (semi-crystalline polymers) Extrapolation time factors for glassy, amorphous vinyl chloride based polymers Extrapolation time factors for polymers other than those covered in 5.2 and 5.3	3 3 6 7
6 7	Example of calculation, software validation Test report	7 8
Annex	A (normative) Methods of analysis dards.iteh.ai)	. 9
Annex	B (normative) Automatic knee detection	13
Annex	C (informative) Application of SEM to stress rupture data of a semi-crystalline polymer	14
Annex	D (informative) Application of SEM to stress rupture data of a vinyl chloride based polymer	22
Annex	E (informative) Software for calculation of stress-rupture data according to ISO 9080	28
Bibliog	Jraphy	29

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 9080 was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fitings and valves for the transport of fluids*, Subcommittee SC 5, *General properties of pipes, fittings and valves of plastic materials and their accessories* — *Test methods and basic specifications*.

This second edition cancels and replaces the first edition (ISO 9080:2003), which has been technically revised. The following changes have been made:

- all references to lifetime have been removed, as this standard only deals with the mathematics for extrapolation and the calculation of long-term strength;
- a more accurate description of the number and distribution of the observations and of the use of the extrapolation has been included;
 SIST EN ISO 9080:2012
- the observations in the example of Annex C have been modified in order to comply with the specifications
 of this standard and, consequently, the results of the regression calculations have been updated;
- a second set of observations has been added in Annex D in order to provide an evaluation according to the 3-parameter model (see Annex C), and according to the 4-parameter model (see Annex D);
- a second software package has been evaluated and included in Annex E.

Introduction

0.1 General

This Standard Extrapolation Method (SEM) is meant to be used to evaluate the long-term hydrostatic strength of a material in pipe form. Product standards have specific requirements for the physical and mechanical properties of the material used for the intended application. It is emphasized that the Standard Extrapolation Method (SEM) described in this document is not intended to be used to disqualify existing procedures for arriving at design stresses or allowable pressures for pipelines made of plastics materials, or to disqualify pipelines made of materials proven by such procedures, for which experience over many years has been shown to be satisfactory.

Software packages have been developed for the SEM analysis as described in Annex A and Annex B. Windowsbased programmes are commercially available (see Annex E). Use of these software packages is recommended.

0.2 Principles

The suitability of a plastics material for a pressure pipe is determined by its long-term performance under hydrostatic stress when tested in pipe form, taking into account the envisaged service conditions (e.g. temperature). For design purposes, it is conventional to express this by means of the hydrostatic (hoop) stress which a plastics pipe made of the material under consideration is expected to be able to withstand for 50 years at an ambient temperature of 20 °C using water as the internal test medium. The outside test environment can be water or air. This method is not intended to imply service life. In certain cases, it is necessary to determine the value of the hydrostatic strength at either shorter design times or higher temperatures, or on occasion both. The method given in this International Standard is designed to meet the need for both types of estimate. The result obtained will indicate the lower prediction limit (LPL), which is the lower confidence limit of the prediction of the value of the stress that can cause failure in the stated time at a stated temperature.

This International Standard provides and efinitive procedure incorporating and extrapolation method using test data at different temperatures analysed by multiple linear regression analysis. The results permit the determination of material-specific design values in accordance with the procedures described in the relevant product standards.

This multiple linear regression analysis is based on the rate processes most accurately described by log_{10} (stress) versus log_{10} (time) models.

In order to assess the predictive value of the model used, it has been considered necessary to make use of the estimated 97,5 % lower prediction limit (LPL). The 97,5 % lower prediction limit is equivalent to the lower 97,5 % confidence limit for the predicted value. This convention is used in the mathematical calculations to be consistent with the literature. This aspect necessitates the use of statistical techniques.

The method can provide a systematic basis for the interpolation and extrapolation of stress rupture characteristics at operating conditions different from the conventional 50 years at 20 °C (see 5.1.5).

Thermoplastic materials in pipe form such as mineral filled thermoplastic polymer, fibre reinforced thermoplastics, plasticized thermoplastics, blends and alloys may have further considerations with regards to prediction of long term strength which have to be taken into account in the corresponding product standards.

It is essential that the medium used for pressurizing the pipe does not have an adverse effect on the pipe. In general, water is considered to be such a medium.

Long consideration was given to deciding which variable should be taken as the independent variable to calculate the long-term hydrostatic strength. The choice was between time and stress.

The basic question the method has to answer can be formulated in two ways, as indicated below:

a) What is the maximum stress (or pressure) that a given material in pipe form can withstand at a given temperature for a defined time?

b) What is the predicted time to failure for a material in pipe form at a given stress and temperature?

Both questions are relevant.

If the test data for the pipe under study does not show any scatter and if the pipe material can be described perfectly by the chosen empirical model, the regression with either time independence or stress independence will be identical. This is never the case because the circumstances of testing are never ideal nor will the material be 100 % homogeneous. The observations will therefore always show scatter. The regressions calculated using the two optional independent variables will not be identical and the difference will increase with increasing scatter.

The variable that is assumed to be most affected by the largest variability (scatter) is the time variable and it has to be considered as a dependent variable (random variable) in order to allow a correct statistical treatment of the data set in accordance with this method. However, for practical reasons, the industry prefers to present stress as a function of time as an independent variable.

0.3 Use of the methods

The purpose of this extrapolation method is to estimate the following:

- a) The lower prediction limit¹⁾ (at 97,5 % probability level) of the stress which a pipe made of the material under consideration is able to withstand for 50 years at an ambient temperature of 20 °C using water or air as the test environment. In accordance with ISO 12162, the categorised value of this lower prediction limit is defined as MRS and is used for classification of the material.
- b) The value of the lower prediction limit (at 97,5 % probability level) of the stress, either at different design times or at different temperatures, or on occasion both. In accordance with ISO 12162, the categorised value of this lower prediction limit is defined as CRS θ₁ and is used for design purposes.

There are several extrapolation models in existence, which have different numbers of terms. This SEM will use only models with two, three or four parameters catalog/standards/sist/a84383b0-3c53-430d-88b8-

Adding more terms could improve the fit but would also increase the uncertainty of the predictions.

The SEM describes a procedure for estimating the lower prediction limit (at 97,5 % probability level) whether a knee (which demonstrates the transition between data type A and type B) is found or not (see Annex B).

The materials are tested in pipe form for the method to be applicable.

The final result of the SEM for a specific material is the lower prediction limit (at 97,5 % probability level) of the hydrostatic strength, expressed in terms of the hoop stress, at a given time and a given temperature.

For multilayer pipes, the determination of the long-term hydrostatic pressure strength of the products is carried out in accordance with ISO 17456.

For composite and reinforced thermoplastics pipes, guidance on the use of this method is given in the product standards.

Guidance for the long-term strength of a specific material with reference lines is given in the appropriate product standard.

¹⁾ In various ISO documents, the lower prediction limit (LPL) is defined incorrectly as the lower confidence limit (LCL), where LCL is the 97,5 % lower confidence limit for the mean hydrostatic strength.

Plastics piping and ducting systems — Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation

1 Scope

This International Standard specifies a method for predicting the long-term hydrostatic strength of thermoplastics materials by statistical extrapolation. The method is applicable to all types of thermoplastics pipe at applicable temperatures. It was developed on the basis of test data from pipe systems.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1167-1, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method

ISO 1167-2, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 2: Preparation of pipe test pieces

ISO 2507-1:1995, Thermoplastics pipes and fittings — Vicat softening temperature — Part 1: General test method

ISO 3126, Plastics piping systems — Plastics piping components — Measurement and determination of dimensions https://standards.iteh.ai/catalog/standards/sist/a84383b0-3c53-430d-88b8-

ISO 11357-3, Plastics — Differential scanning calorimetry (DSC) - Part 3: Determination of temperature and enthalpy of melting and crystallization

ISO 12162, Thermoplastics materials for pipes and fittings for pressure applications — Classification, designation and design coefficient

ISO 17456, Plastics piping systems — Multilayer pipes — Determination of long-term strength

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

internal pressure

force per unit area exerted by the medium in the pipe, in bars

3.2

stress

 σ

force per unit area in the wall of the pipe in the hoop (circumferential) direction due to internal pressure, in megapascals

NOTE It is derived from the internal pressure using the following simplified equation:

$$\sigma = \frac{p(d_{\rm em} - e_{\rm y,min})}{20e_{\rm y,min}}$$

where