INTERNATIONAL STANDARD

ISO 8899

Second edition 2003-12-01

Oil of lemon petitgrain [Citrus limon (L.) Burm. f.]

Huile essentielle de petitgrain citronnier [Citrus limon (L.) Burm. f.]

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 8899:2003 https://standards.iteh.ai/catalog/standards/sist/685ec804-29d7-4aa6-8e43-4d9162f79688/iso-8899-2003

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 8899:2003 https://standards.iteh.ai/catalog/standards/sist/685ec804-29d7-4aa6-8e43-4d9162f79688/iso-8899-2003

© ISO 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 8899 was prepared by Technical Committee ISO/TC 54, Essential oils.

This second edition cancels and replaces the first edition (ISO 8899.1991), which has been technically revised. Together with the second edition of ISO 855 and the third edition of ISO 3519, it also will cancel and replace ISO 7611:1985.

ISO 8899:2003 https://standards.iteh.ai/catalog/standards/sist/685ec804-29d7-4aa6-8e43-4d9162f79688/iso-8899-2003

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 8899:2003

https://standards.iteh.ai/catalog/standards/sist/685ec804-29d7-4aa6-8e43-4d9162f79688/iso-8899-2003

Oil of lemon petitgrain [Citrus limon (L.) Burm. f.]

Scope

This International Standard specifies certain characteristics of the oil of lemon petitgrain [Citrus limon (L.) Burm. f.], in order to facilitate assessment of its quality.

Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

oil of lemon petitgrain

essential oil obtained by steam distillation of the leaves and twigs, usually without small green fruits, of Citrus limon (L.) Burm. f., of the Rutaceae family, growing in Spain and Italy

NOTE For information on the CAS number, see ISO/TR 21092.

ISO/TR 210, Essential oils General rules for D 4 Requirements packaging, conditioning and storage standards.iteh.aippearance

ISO/TR 211, Essential oils — General rules for la-

belling and marking of containers

ISO 8899:2003 Clear liquid.

https://standards.iteh.ai/catalog/standards/sist/685ec804-29d7-4aa6-8e43-

ISO 212, Essential oils — Sampling 4d9162f79688/iso-8894-2003Colour

ISO 279, Essential oils — Determination of relative density at 20 °C — Reference method

ISO 280, Essential oils — Determination of refractive index

ISO 592, Essential oils — Determination of optical rotation

ISO 875, Essential oils — Evaluation of miscibility in ethanol

ISO 1242, Essential oils — Determination of acid value

ISO 11024-1, Essential oils — General guidance on chromatographic profiles — Part 1: Preparation of chromatographic profiles for presentation in standards

ISO 11024-2, Essential oils — General guidance on chromatographic profiles — Part 2: Utilization of chromatographic profiles of samples of essential oils

Pale yellow to amber yellow.

4.3 Odour

Ethereal, lemon smell.

Relative density at 20 °C, d_{20}^{20}

Minimum: 0.860 Maximum: 0,887

Refractive index at 20 °C

Minimum: 1,472 Maximum: 1,479

Optical rotation at 20 °C

Between +14° and +35°

© ISO 2003 — All rights reserved

4.7 Miscibility in ethanol, 85 % (volume fraction), at 20 °C

It shall not be necessary to use more than 6 to 8 volumes of ethanol, 85 % (volume fraction), to obtain a clear solution with 1 volume of essential oil.

4.8 Acid value

Maximum: 2,0

4.9 Chromatographic profile

Analysis of the essential oil shall be carried out by gas chromatography. In the chromatogram obtained, the representative and characteristic components shown in Table 1 shall be identified. The proportions of these components, indicated by the integrator, shall be as shown in Table 1. This constitutes the chromatographic profile of the essential oil.

Table 1 — Chromatographic profile

Component	Minimum %	Maximum h S% AN	DA
α -Pinene	1,0	2,0	lar
Sabinene	2,0	4,5	lai
β-Pinene	12,0	21,0	ISO 8
Limonene	3010tps://star	ndards.i 12 .0i/catalo	g/stand
<i>trans</i> -β-Ocimene	1,5	3,04d9162	f7968
Linalol	0,2	3,5	
Neral	3,0	11,0	
Geranial	4,0	15,0	
Neryl acetate	1,5	7,0	
Geranyl acetate	1,0	4,0	

NOTE The chromatographic profile is normative, contrary to typical chromatograms given for information in Annex A.

4.10 Flashpoint

Information on the flashpoint is given in Annex B.

5 Sampling

See ISO 212.

Minimum volume of test sample: 25 ml.

NOTE This volume allows each of the tests specified in this International Standard to be carried out at least once.

6 Test methods

6.1 Relative density at 20 °C, d_{20}^{20}

See ISO 279.

6.2 Refractive index at 20 °C

See ISO 280.

6.3 Optical rotation at 20 °C

See ISO 592 EVIEW

6.4 Miscibility in ethanol, 85 % (volume fraction), at 20 °C

SO 8899-2003 See ISO 875. standards/sist/685ec804-29d7-4aa6-8e43-

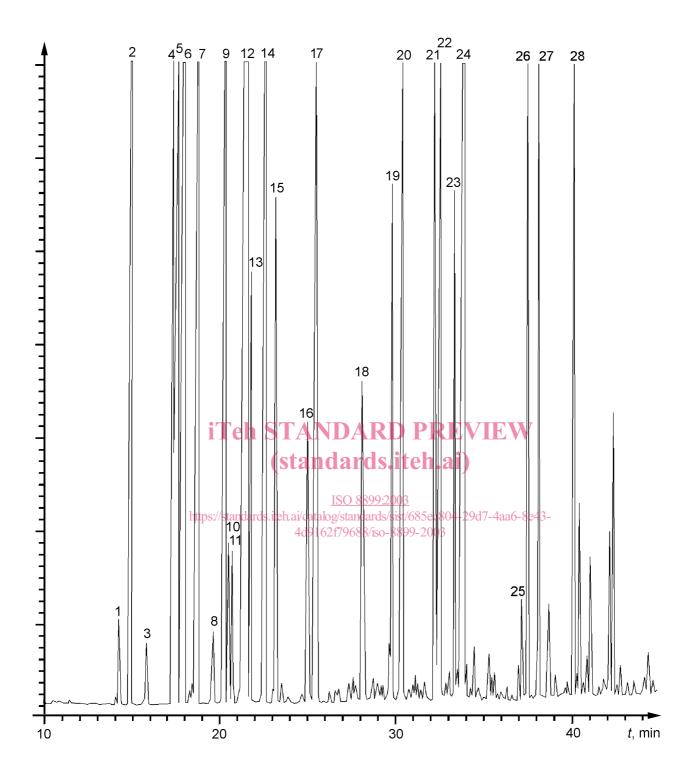
6.5 Acid value

See ISO 1242.

6.6 Chromatographic profile

See ISO 11024-1 and ISO 11024-2.

7 Packaging, labelling, marking and storage


See ISO/TR 210 and ISO/TR 211.

Annex A (informative)

Typical chromatograms of the analysis by gas chromatography of the essential oil of lemon petitgrain [Citrus limon (L.) Burm. f.]

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 8899:2003 https://standards.iteh.ai/catalog/standards/sist/685ec804-29d7-4aa6-8e43-4d9162f79688/iso-8899-2003

Peak identification

 $\begin{array}{ll} 1 & \alpha\text{-Thujene} \\ 2 & \alpha\text{-Pinene} \\ 3 & \text{Camphene} \end{array}$

4 6-Methyl-5-hepten-2-one

5 Sabinene
6 β-Pinene
7 Myrcene
8 α-Phellandrene
9 δ-3-Carene
10 α-Terpinene
11 p-Cymene
12 Limonene

13 *cis*-β-Ocimene14 *trans*-β-Ocimene

15 γ-Terpinene

16 Terpinolene

17 Linalol

18 Citronellal19 Terpinen-4-ol

20 α-Terpineol

21 Nerol

22 Neral

23 Geraniol24 Geranial

25 Citronellyl acetate

26 Neryl acetate

27 Geranyl acetate

28 β-Caryophyllene

Operating conditions

Column: fused silica capillary; length 60 m; internal diameter 0,25 mm

Stationary phase: methyl silicone (DB-1®)

Film thickness: 0,25 µm

Oven temperature: temperature programming from 60 °C to 75 °C at a rate of

1 °C/min, then 2 °C/min to 110 °C and 3 °C/min to 250 °C

Injector temperature: 260 °C Detector temperature: 270 °C Detector: flame ionization type

Carrier gas: helium Volume injected: 0,05 µl Carrier gas flow rate: 1 ml/min

Split ratio: 1/80

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 8899:2003

https://standards.iteh.ai/catalog/standards/sist/685ec804-29d7-4aa6-8e43-4d9162f79688/iso-8899-2003

Figure A.1 — Typical chromatogram taken on an apolar column