INTERNATIONAL STANDARD

First edition 2006-06-15

Ball screws -

Part 5: Static and dynamic axial load ratings and operational life

iTeh STANDARD PREVIEW Partie 5: Charges axiales statiques et dynamiques de base et durée (stde vielards.iteh.ai)

<u>ISO 3408-5:2006</u> https://standards.iteh.ai/catalog/standards/sist/b2227209-26c5-468e-8ebb-8ad234f955fb/iso-3408-5-2006

Reference number ISO 3408-5:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 3408-5:2006</u> https://standards.iteh.ai/catalog/standards/sist/b2227209-26c5-468e-8ebb-8ad234f955fb/iso-3408-5-2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forewordiv		
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4 4.1 4.2	Symbols and subscripts Symbols Subscripts	2 2 3
5 5.1 5.2	Basic axial load ratings Basic static axial load rating, C_{0a} Basic dynamic axial load rating, C_{a}	444
6 6.1	Modified axial load ratings Modified static axial load rating, $C_{0\rm am}$	5 5
6.1.1 6.1.2	General equation Correction for surface hardness, f_{h0}	5
6.2 6.2.1	Modified dynamic axial load rating, Cameral equation (Standards.iten.ai)	6
6.2.2	Correction for surface hardness, $f_{\rm h}$	6
6.2.3	Correction for accuracy, f _{ac} <u>ISO 3408-5:2006</u> https://standards.tich.ai/cataloo/standards/sist/b2227209-26c5-468e-8ebb-	6
6.2.4	Influence of material melting process factors add234195516/Bo-3408-5-2006	6
7 7.1 7.1.1	Life Equivalent rotational speed and equivalent axial load General	7 7 7
7.1.2 7.1.3 7.2	Ball screw with backlash between ball nut and screw shaft Ball screw with preloaded ball nuts on screw shaft Nominal life, <i>L</i> or <i>L</i> _b	7 10 12
7.2.1 7.2.2 7.2.3	Ball screw with backlash between ball nut and screw shaft Ball screw with preloaded ball nuts on screw shaft	12 13 13
7.2.4 7.3	Nominal life, L_{ar} or L_{har} , with reliability factor, f_{ar} (see Table 3)	13 14
7.3.1 7.3.2 7.3.3	Ball screw with backlash between ball nut and screw shaft	14 14 14
7.3.4	Modified life, L_{mar} or L_{hmar} , with reliability factor, f_{ar} (see Table 3)	14

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 3408-5 was prepared by Technical Committee ISO/TC 39, Machine tools.

ISO 3408 consists of the following parts, under the general title Ball screws:

- Part 1: Vocabulary and designation (standards.iteh.ai)
- Part 2: Nominal diameters and nominal leads Metric series
- Part 3: Acceptance conditions and acceptance tests 8ad23419551b/iso-3408-5-2006
- Part 4: Static axial rigidity
- Part 5: Static and dynamic axial load ratings and operational life

Ball screws —

Part 5: Static and dynamic axial load ratings and operational life

1 Scope

This part of ISO 3408 specifies the calculation schemes for static and dynamic load ratings, and operational life, in order to obtain comparable values for the design and use of ball screws.

NOTE The calculations have been based primarily on publications by Prof. G. Lundberg and A. Palmgren *Acta Politechnica, mech. Eng.* series Vol. I, No. 3, Stockholm, Sweden. Part 7, 1947.

This part of ISO 3408 is applicable under the following preconditions:

- elastic deformation of ball and balltrack; DARD PREVIEW
- hardness of balltrack basically exceeds a minimum of HRC 58;
- conformity f_{rs} and $f_{rn} > 0,5$;

<u>ISO 3408-5:2006</u>

- the quality of steel of which the ball screw is made is equivalent to that of ball bearing steel or similar steel alloys;
- optimum lubrification is always provided.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)

ISO 3408-1, Ball screws — Part 1: Vocabulary and designation

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 3408-1 apply.

4 Symbols and subscripts

4.1 Symbols

Symbol	Description	Unit
α	Contact angle	degrees, °
γ	Geometry factor	—
φ	Lead angle	degrees, °
ρ ₁₁ , ρ ₁₂ , ρ ₂₁ , ρ ₂₂	Reciprocal curvature radii	mm ⁻¹
Δl	Axial ball / ball track deflection	μm
Ca	Basic dynamic axial load rating	Ν
C_{am}	Modified dynamic axial load rating	Ν
C_i	Dynamic axial load rating for the ball screw per single loaded turn	Ν
C _n	Dynamic axial load rating for the ball nut per single loaded turn	Ν
Cs	Dynamic axial load rating for the ball screw shaft per single loaded turn	Ν
C _{0a}	Basic static axial load rating DARD PREVIEW	Ν
$C_{0 am}$	Modified static axia (load rating ards.iteh.ai)	Ν
D _{pw}	Ball pitch circle diameter	mm
D_{W}	Ball diameterndards.iteh.ai/catalog/standards/sist/b2227209-26c5-468e-8ebb-	mm
$f_{\sf ac}$	Accuracy factor 8ad234f955fb/iso-3408-5-2006	_
$f_{\sf ar}$	Reliability factor	_
$f_{\sf C}$	Geometry factor	—
f_{h}	Hardness factor for dynamic axial load rating	—
f _{h0}	Hardness factor for static axial load rating	—
$f_{\sf m}$	Material processing factor	_
f _{op}	Operational preload factor	—
f _{rn}	Conformity factor of ball nut	—
$f_{\sf rs}$	Conformity factor of ball screw shaft	—
f_1, f_2, f_3	Geometry factor	—
F	Axial load, force	Ν
Fa	Actual axial load	Ν
F _{lim}	Limit load at which contact between balls and ball tracks will be lost by operating load	Ν
F _m	Equivalent axial load	Ν
$F_{\sf ma}$	Equivalent actual axial load	Ν

Symbol	Description	Unit
F _{pr}	Preload	Ν
i	Number of loaded turns	—
<i>k</i> ₀	Characteristic of basic static axial load rating	_
L	Life	revolutions
L_{ar}	Life with reliability factor	revolutions
L _h	Life	h
$L_{\sf har}$	Life with reliability factor	h
L _{hm}	Modified life	h
L_{hmar}	Modified life with reliability factor	h
L _m	Modified life	revolutions
$L_{\sf mar}$	Modified life with reliability factor	revolutions
L _{mr}	Modified resulting life	revolutions
L _r	Resulting life	revolutions
n	Rotational speed	min ⁻¹
<i>n</i> m	Equivalent rotational speed RD PREVIEW	min ⁻¹
P _h	Lead (standards.iteh.ai)	mm
q	Time ISO 3408-5:2006	%
r _n	httjBallitrackdraidiusi/oftball/mutdards/sist/b2227209-26c5-468e-8ebb-	mm
rs	Ball track radius of ball screw shaft	mm
z _l	Number of effectively loaded balls per turn	—
^z u	Number of unloaded balls in the recirculation system where balls are recirculated after one turn	_

4.2 Subscripts

Symbol	Description	
j	Number of loadings	
1	Refers to load direction 1	
2	Refers to load direction 2	
(1)	Refers to ball nut 1	
(2)	Refers to ball nut 2	

5 Basic axial load ratings

5.1 Basic static axial load rating, C_{0a}

The basic axial load rating is calculated from the following equations:

$$C_{0a} = k_0 \cdot z_1 \cdot i \cdot \sin \alpha \cdot D_w^2 \cdot \cos \varphi \tag{1}$$

$$z_{I} = \left(\frac{D_{pw} \cdot \pi}{\cos \varphi \cdot D_{w}} - z_{u}\right)_{integer}$$
(2)

$$\varphi = \arctan\left(\frac{P_{\mathsf{h}}}{\pi \cdot D_{\mathsf{pw}}}\right) \tag{3}$$

$$k_{0} = \frac{27,74}{D_{w} \cdot \sqrt{(\rho_{11} + \rho_{12}) \cdot (\rho_{21} + \rho_{22})}}$$
(4)

$$\rho_{11} = \rho_{21} = \frac{2}{D_{\rm w}} \tag{5}$$

$$\rho_{12} = \frac{-1}{f_{rs} \cdot D_{w}}$$
 iTeh STANDARD PREVIEW (6)
(standards.iteh.ai)

$$\rho_{22} = \frac{\cos\alpha}{\frac{D_{pw}}{2} - \cos\alpha \cdot \frac{D_{w}}{2^{\text{https://standards.iteh.ai/catalog/standards/sist/b2227209-26c5-468e-8ebb-8ad234f955fb/iso-3408-5-2006}}$$
(7)

NOTE The calculation of the basic static axial load rating C_{0a} is based on a maximum deformation of 0,000 1 $\cdot D_{w}$.

5.2 Basic dynamic axial load rating, C_a

In the case of optimal load distribution (parallel load directions in ball screw shaft and in ball nut), the basic dynamic axial load rating is derived from the following basic interrelations:

$$C_{\mathsf{a}} = C_i \cdot i^{0.86} \tag{8}$$

where

$$C_i = C_{\rm s} \cdot \left[1 + \left(\frac{C_{\rm s}}{C_{\rm n}}\right)^{10/3} \right]^{-0.3} \tag{9}$$

with

$$C_{\rm s} = f_{\rm c} \cdot \left(\cos\alpha\right)^{0,86} \cdot z_{\rm l}^{2/3} \cdot D_{\rm w}^{1,8} \cdot \tan\alpha \cdot \left(\cos\varphi\right)^{1,3} \tag{10}$$

$$f_{\rm c} = 9,32 \cdot f_1 \cdot f_2 \cdot \left(\frac{1}{1 - \frac{1}{2 \cdot f_{\rm rs}}}\right)^{0,41}$$
(11)

$$f_1 = 10 \cdot \left(1 - \frac{\sin \alpha}{3}\right) \tag{12}$$

$$f_2 = \frac{\gamma^{0,3} \cdot (1-\gamma)^{1,39}}{(1+\gamma)^{1/3}}$$
(13)

$$\gamma = \frac{D_{\rm W}}{D_{\rm pw}} \cdot \cos \alpha \tag{14}$$

$$\frac{C_{\rm s}}{C_{\rm n}} = f_3 \cdot \left(\frac{2 - \frac{1}{f_{\rm rn}}}{2 - \frac{1}{f_{\rm rs}}}\right)^{0,41} \tag{15}$$

$$f_{\rm rn} = \frac{r_{\rm n}}{D_{\rm w}} \tag{16}$$

$$f_{\rm rs} = \frac{r_{\rm s}}{D_{\rm w}} \tag{17}$$

$$f_{3} = \left(\frac{1-\gamma}{1+\gamma}\right)^{1,72\overline{3}} \quad \text{IT eh STANDARD PREVIEW} (standards.iteh.ai)$$
(18)

*z*₁, see Equation (2) <u>ISO 3408-5:2006</u> https://standards.iteh.ai/catalog/standards/sist/b2227209-26c5-468e-8ebb-8ad234f955fb/iso-3408-5-2006

6 Modified axial load ratings

6.1 Modified static axial load rating, C_{0am}

6.1.1 General equation

$$C_{0\rm{am}} = C_{0\rm{a}} \cdot f_{\rm{h0}} \cdot f_{\rm{ac}} \tag{19}$$

6.1.2 Correction for surface hardness, f_{h0}

A deviation in hardness has to be corrected by

$$f_{h0} = \left(\frac{\text{actual hardness HV10}}{654 \text{ HV10}}\right)^3 \le 1$$
(20)

The hardness factors shall only apply to ball bearing steel or similar steel alloys.

6.1.3 Correction for accuracy, f_{ac}

See Table 1.

Table 1 — Accuracy factor, f_{ac} (reference data)

Class	0, 1, 3 and 5	7	10
f_{ac}	1	0,9	0,7

Modified dynamic axial load rating, Cam 6.2

6.2.1 General equation

$$C_{am} = C_a \cdot f_h \cdot f_{ac} \cdot f_m$$

6.2.2 Correction for surface hardness, *f*_h

 $f_{\rm h} = \left(\frac{\text{actual hardness HV10}}{654 \text{ HV10}}\right)^2 \le 1$ See paragraph immediately following Equation (20) (22)

6.2.3 Correction for accuracy, *f_{ac}h* STANDARD PREVIEW

The correction for accuracy, f_{ac} , for dynamic axial load is the same as for static axial load, see Table 1.

6.2.4 Influence of material melting process, f_{m} ISO 3408-5:2006 https://standards.iteh.ai/catalog/standards/sist/b2227209-26c5-468e-8ebb-8ad234f955fb/iso-3408-5-2006 See Table 2.

Table 2 — Material factor, $f_{\rm m}$ (reference data)

Ball bearing steel	$f_{\sf m}$
Air melted	1,0
Vacuum degassed	1,25
Electro slag remelted	1,44
Vacuum remelted	1,71

If other than air melted steel is used, the ball screw supplier shall specify the selected melting process in the data sheets.

(21)

7 Life

7.1 Equivalent rotational speed and equivalent axial load

7.1.1 General

In the case of variable rotational speed and variable axial load, the equivalent values F_m and n_m are used for the life calculation:

— At variable rotational speed the following applies for the equivalent rotational speed $n_{\rm m}$ (see Figure 1):

$$n_{\rm m} = \sum_{j=1}^{n} \frac{q_j}{100} \cdot n_j \tag{23}$$

At variable axial load and variable rotational speed, the following applies for the equivalent axial load F_m (see Figure 2):

$$F_{\rm m} = \sqrt[3]{\sum_{j=1}^{n} F_j^3 \cdot \frac{n_j}{n_{\rm m}} \cdot \frac{q_j}{100}}$$
(24)

At variable axial load and constant rotational speed, the following applies for the equivalent axial load F_m (see Figure 2):
 iTeh STANDARD PREVIEW

Figure 1 — Equivalent rotational speed nm

Figure 2 — Equivalent axial load F_m

7.1.2 Ball screw with backlash between ball nut and screw shaft

7.1.2.1 Unidirectional external axial load applied

See Figure 3.