INTERNATIONAL STANDARD

First edition 2006-12-01

Test conditions for numerically controlled turning machines and turning centres —

Part 5:

Accuracy of feeds, speeds and interpolations

iTeh STANDARD PREVIEW Conditions d'essai des tours à commande numérique et des centres de (stournage-ds.iteh.ai)

Partie 5: Exactitude des vitesses, avances et interpolations ISO 13041-5:2006 https://standards.iteh.ai/catalog/standards/sist/f25e8327-8ae1-4fec-83ff-7da588ef63a8/iso-13041-5-2006

Reference number ISO 13041-5:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13041-5:2006</u> https://standards.iteh.ai/catalog/standards/sist/f25e8327-8ae1-4fec-83ff-7da588ef63a8/iso-13041-5-2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13041-5 was prepared by Technical Committee ISO/TC 39, *Machine tools*, Subcommittee SC 2, *Test conditions for metal cutting machine tools*.

ISO 13041 consists of the following parts, under the general title *Test conditions for numerically controlled turning machines and turning centres*:tandards.iteh.ai)

- Part 1: Geometric tests for machines with a horizontal workholding spindle
- Part 2: Geometric tests for machines with a vertical workholding spindle
- Part 3: Geometric tests for machines with an inverted vertical workholding spindle
- Part 4: Accuracy and repeatability of positioning of linear and rotary axes
- Part 5: Accuracy of feeds, speeds and interpolations
- Part 6: Accuracy of a finished test piece
- Part 7: Evaluation of contouring performance in the coordinate planes
- Part 8: Evaluation of thermal distortions

Introduction

A numerically controlled turning machine is a machine tool in which the principal motion is the rotation of the workpiece against the stationary cutting tool(s) and where cutting energy is brought by the workpiece and not by the tool. This machine is controlled by a numerical control (NC) providing automatic function according to ISO 13041-1:2004, 3.3, and can be of single- or multi-spindle type.

A turning centre is an NC turning machine equipped with power driven tool(s) and the capacity to orientate the work holding spindle around its axis.

The object of ISO 13041 is to supply information as wide and comprehensive as possible on geometric, positional, contouring, thermal and machining tests, which can be carried out for comparison, acceptance, maintenance or any other purpose.

ISO 13041 specifies, with reference to the relevant parts of ISO 230, *Test code for machine tools*, tests for turning centres and numerically controlled turning machines with or without tailstocks standing alone or integrated in flexible manufacturing systems. ISO 13041 also establishes the tolerances or maximum acceptable values for the test results corresponding to general purpose and normal accuracy turning centres, and numerically controlled turning machines.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13041-5:2006</u> https://standards.iteh.ai/catalog/standards/sist/f25e8327-8ae1-4fec-83ff-7da588ef63a8/iso-13041-5-2006

Test conditions for numerically controlled turning machines and turning centres —

Part 5: Accuracy of feeds, speeds and interpolations

1 Scope

This part of ISO 13041 specifies, with reference to ISO 230-1, certain kinematic tests for numerically controlled (NC) turning machines and turning centres, concerning the spindle speeds, the feeds of the individual NC linear axes and the accuracy of the paths described by the simultaneous movement of two or more NC linear and/or rotary axes.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies **ITCS.Iten.al**)

ISO 230-1:1996, Test code for machine tools T3Part <u>12</u>Ge ometric accuracy of machines operating under noload or finishing conditions/standards.iteh.ai/catalog/standards/sist/f25e8327-8ae1-4fec-83ff-

7da588ef63a8/iso-13041-5-2006 ISO 230-4:2005, Test code for machine tools — Part 4: Circular tests for numerically controlled machine tools

3 Preliminary remarks

3.1 Measuring units

In this part of ISO 13041, all linear dimensions, deviations and corresponding tolerances are expressed in millimetres, angular dimensions are expressed in degrees, and angular deviations and the corresponding tolerances are expressed in ratios, but in some cases microradians or arcseconds may be used for clarification purposes. The equivalence of the following expressions should always be kept in mind:

 $0,010/1\ 000 = 10 \times 10^{-6} = 10 \ \mu rad \approx 2 \ arcsec$

3.2 Reference to ISO 230-1

For application of this part of ISO 13041, reference shall be made to ISO 230-1, especially for the installation of the machine before testing, warming-up of spindles and other moving parts, the description of measuring methods, and recommended accuracy of testing equipment.

3.3 Testing sequence

The sequence in which the kinematic tests are given in no way defines the practical order of testing. In order to make the mounting of instruments or gauging easier, tests may be performed in any order.

3.4 Tests to be performed

When testing a machine, it is not always necessary or possible to carry out all the tests given in this part of ISO 13041. When the tests are required for acceptance purposes, the choice of tests relating to the components and/or the properties of the machine of interest is at the discretion of the user, in agreement with the supplier/manufacturer. The tests to be used are to be clearly stated when ordering a machine. The mere reference to this part of ISO 13041 for the acceptance tests, without specifying the tests to be carried out, and without agreement on the relevant expenses, cannot be considered as binding for any contracting party.

3.5 Measuring instruments

The measuring instruments indicated in relation to the tests given in Clause 4 are examples only. Other instruments measuring the same quantities and having at least the same measurement uncertainty and the same resolution may be used.

Due to the requirement of graphical representation of the results (e.g. detection of spikes at reversal points or repeatability of the circular paths) in tests K3 to K6, measuring instruments shall have a resolution of 0,001 mm or better.

3.6 Diagrams

For reasons of simplification, the figures in this part of ISO 13041 illustrate only certain types of machines.

4 Kinematic tests **iTeh STANDARD PREVIEW**

4.1 Speeds (K1) and feeds (K2) (standards.iteh.ai)

The purpose of these tests is to check the overall accuracy of all the electric, electronic and kinematic chain in the control system between the command values given by the controller 27-8ae1-4fec-83ff-

7da588ef63a8/iso-13041-5-2006

4.2 Linear interpolations (K3)

The purpose of this test is to check the mutual behaviour of two linear axes while they are moving at the same feed rate (45° angle) and to check the behaviour of each one of them at very low feed rate (small angles), with the stick-slip motion possible.

4.3 Circular interpolations (K4)

The purpose of this test is to check the mutual behaviour of two linear axes (generally X and Z) at variable feed rates, including points in which the feed of one axis slows down to zero and the direction of movement is reversed.

4.4 Radial interpolations (K5)

This test is an alternative to K4, in cases where the machine under test does not have a measurement sweep of 360° or if K4 is otherwise not relevant. The purpose of this test is to check the mutual behaviour of two linear axes (generally X and Z) at variable feed rates, including points in which the feed of one axis slows down to zero and the direction of movement is reversed.

4.5 Interpolations between X, Y and C axes (K 6)

The purpose of this test is to check the interpolation between the X, Y and C axes of a turning centre for clockwise and anticlockwise (counter-clockwise) contouring motions.

Object					K1
Checking of deviations in the spindle speed at 50 % and 100 % of the maximum speed of each range, in the clockwise and anticlockwise (counter-clockwise) directions of rotation.					
Diagram					
Tolerance $\pm 5 \%$					
Measured deviation					
	Speed range	Direction of rotation	Programmed speed	Actual speed	% deviation
		Anticlockwise			
	i	Clockwise TANDA	RD PREVI	L W	
		Anticlockwise and ar	ds.iteh.ai)		
		Clockwise			
	http:	Anticlockwise	<u>41-5:2006</u> dards/sist/f25e8327_8ae1_/	fac 83ff	
	Titips		o-13041-5-2006	100-0311-	
		Anticlockwise			
		Clockwise			
	ng instruments	oscope or others			
Observations and references to ISO 230-1					
If the instantaneous speed is read, five readings shall be taken and the average calculated.					
Readings shall be taken at constant speed, avoiding the acceleration/deceleration at start and stop.					
The override control shall be set at 100 %.					
The spindle speed deviation shall be calculated using the following formula:					
% deviation = $\frac{\text{actual speed} - \text{programmed speed}}{\text{programmed speed}} \times 100$					
NOTE This test is applicable to all main spindles and all tool spindles.					

For tests using the straightedge [see 1 b)], attach the straightedge to the workholding spindle faceplate or four-jaw chuck with gauging surface at approximately \pm 3° to the X-axis travel. Lock the workholding spindle rotation. Attach a linear displacement sensor to the tool slide with the stylus contacting the gauging surface of the straightedge.

For all straightness tests, establish a common linear displacement sensor zero at two locations on the gauging surface of the artefact, conveniently spaced at the required measuring length with an additional allowance for axis acceleration and deceleration. Record the coordinate locations of the X and Z axes of the selected points. Program a bi-directional move at 250 mm/min between the two locations and record the straightness data. Analyse the recorded data separately in each direction (as per ISO 230-1) excluding an allowance for acceleration and deceleration. The larger deviation and its direction shall be recorded as the result of the test.