INTERNATIONAL STANDARD

First edition 2001-12-15

Butter — Determination of moisture, nonfat solids and fat contents —

Part 1:

Determination of moisture content (Reference method)

iTeh STANDARD PREVIEW Beurre — Détermination des teneurs en eau, en matière sèche non grasse et en matière grasse teh.ai)

Partie 1: Détermination de la teneur en eau (Méthode de référence) ISO 3727-1:2001

https://standards.iteh.ai/catalog/standards/sist/eee97fc4-8110-4e42-ac98-a71a616eb2fa/iso-3727-1-2001

Reference numbers ISO 3727-1:2001(E) IDF 80-1:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central Secretariat nor the IDF accepts any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and IDF national committees. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3727-1:2001 https://standards.iteh.ai/catalog/standards/sist/eee97fc4-8110-4e42-ac98-

a71a616eb2fa/iso-3727-1-2001

© ISO and IDF 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO or IDF at the respective address below.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch

Printed in Switzerland

International Dairy Federation 41 Square Vergote • B-1030 Brussels Tel. + 32 2 733 98 88 Fax + 32 2 733 04 13 E-mail info@fil-idf.org Web www.fil-idf.org

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 3727 IDF 80 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 3727-1 IDF 80-1 was prepared by Technical Committee ISO/TC 34, *Food products*, Subcommittee SC 5, *Milk and milk products*, and the International Dairy Federation (IDF), in collaboration with AOAC International. It is being published jointly by ISO and IDF and separately by AOAC International.

This first edition of ISO 3727-1 IDF 80 1 together with ISO 3727-2 IDF 80-2 and ISO 3727-3 IDF 80-3, cancels and replaces ISO 3727:1977, which has been technically revised.

ISO 3727 IDF 80 consists of the following parts, under the general title Butter — Determination of moisture, non-fat solids and fat contents: a71a616eb2fa/iso-3727-1-2001

- Part 1: Determination of moisture content (Reference method)
- Part 2: Determination of non-fat solids content (Reference method)
- Part 3: Calculation of fat content

Annex A of this part of ISO 3727 | IDF 80 is for information only.

Foreword

IDF (the International Dairy Federation) is a worldwide federation of the dairy sector with a National Committee in every member country. Every National Committee has the right to be represented on the IDF Standing Committees carrying out the technical work. IDF collaborates with ISO and AOAC International in the development of standard methods of analysis and sampling for milk and milk products.

Draft International Standards adopted by the Action Teams and Standing Committees are circulated to the National Committees for voting. Publication as an International Standard requires approval by at least 50 % of National Committees casting a vote.

International Standard ISO 3727-1 IDF 80-1 was prepared by Technical Committee ISO/TC 34, *Food products*, Subcommittee SC 5, *Milk and milk products*, and the International Dairy Federation (IDF), in collaboration with AOAC International. It is being published jointly by ISO and IDF and separately by AOAC International.

All work was carried out by the Joint ISO/IDF/AOAC Action Team, *Water*, of the Standing Committee on *Main components of milk*, under the aegis of its project leader, Mr G. J. Beutick (NL).

This first edition of ISO 3727-1 IDF 80-1, together with ISO 3727-2 IDF 80-2 and ISO 3727-3 IDF 80-3, cancels and replaces IDF 80:1977, which has been technically revised.

ISO 3727 IDF 80 consists of the following parts, under the general title Butter — Determination of moisture, non-fat solids and fat contents: (standards.iteh.ai)

- Part 1: Determination of moisture content (Reference method)
- Part 2: Determination of non-fat solids conjent (Reference method)
- Part 3: Calculation of fat content

Annex A of this part of ISO 3727 | IDF 80 is for information only.

Butter — Determination of moisture, non-fat solids and fat contents —

Part 1: **Determination of moisture content (Reference method)**

1 Scope

This part of ISO 3727 IDF 80 specifies the reference method for the determination of the moisture content of butter.

(standards.iteh.ai)

2 Term and definition

For the purposes of this part of ISO 3727 IDF 80, the following term and definition applies.

2.1

moisture content

mass fraction of substances determined by the procedure specified in this part of ISO 3727 | IDF 80 https://standards.iteh.ai/catalog/standards/sist/eee97fc4-8110-4e42-ac98-

NOTE The moisture content is expressed as a percentage by/mass2001

3 Principle

A known mass of butter is dried in the presence of pumice stone at 102 °C \pm 2 °C. The remaining dry mass is weighed to determine the loss in mass.

4 Apparatus

Usual laboratory equipment and, in particular, the following.

4.1 Analytical balance, capable of weighing to the nearest 1 mg, with a readability of 0,1 mg.

4.2 Drying oven, ventilated, thermostatically controlled, capable of maintaining a temperature of 102 °C \pm 2 °C throughout the entire working space.

4.3 **Desiccator**, containing a suitable drying agent, for example freshly dried silica gel with hygrometric indicator.

4.4 Dishes, made of glazed porcelain, or metal resistant to corrosion under the conditions of the test, with height between 20 mm and 40 mm, and diameter between 50 mm and 70 mm.

4.5 Pumice stone, granular, with diameter between 0,8 mm and 8 mm.

ISO 3727-1:2001(E) IDF 80-1:2001(E)

Sampling 5

Sampling is not part of the method specified in this part of ISO 3727 IDF 80. A recommended sampling method is given in ISO 707.

It is important that the laboratory receive a sample which is truly representative and has not been damaged or changed during transport or storage.

The test sample shall be received in an airtight container closed with a lid to avoid loss of moisture. The capacity of the container shall be such that the test sample occupies one-half to two-thirds of its volume.

Until commencing the preparation of the test sample, store the sample in the airtight container at a temperature of between 2 °C and 14 °C.

Preparation of test sample 6

Warm the test sample in the unopened airtight container to a temperature not exceeding 35 °C. 6.1

If fat separation may be expected (e.g. in low-hard-fraction test samples or through knowledge obtained from laboratory experience), warm such test samples in the unopened airtight container to a more typical homogenization temperature of between 24 °C and 30 °C.

Mix the test sample in the unopened container to a homogeneous state (either by a mechanical shaker or by hand) without getting any rupture of emulsion. Take precautions to avoid loss of moisture.

Before weighing, open the sample container and stir the test sample with a suitable device such as a spoon 6.2 or spatula for no longer than 10 s.

ISO 3727-1:2001

7 Procedure

https://standards.iteh.ai/catalog/standards/sist/eee97fc4-8110-4e42-ac98a71a616eb2fa/iso-3727-1-2001

7.1 Blank test

Simultaneously with the determination of the test sample (6.2), carry out a blank test using the same procedure for the preparation of the dish (7.2) and the determination (7.3), but omitting the test sample (7.3.1).

7.2 Preparation of the dish

7.2.1 Put 10 g \pm 0,5 g of pumice stone (4.5) in the dish (4.4).

Heat the dish with the pumice stone for at least 1 h in the drying oven (4.2) set at 102 °C. Determine 7.2.2 experimentally the time required for the drying oven to reach 102 °C.

The above-mentioned drying period of > 1 h and that in 7.3.2 and 7.3.4 starts when the temperature of the contents NOTE of the dish reaches 102 °C ± 2 °C. The time required to reach that temperature depends on the heating capacity, frequency of ventilation and size of the oven. It also depends on the number, mass and material of the dishes.

7.2.3 Cool the dish in the desiccator (4.3) to the temperature of the weighing room. Use the analytical balance (4.1) to weigh the dish to the nearest 1 mg.

7.3 Determination

- 7.3.1 Weigh, to the nearest 1 mg, approximately 5 g of the test sample (6.2) into the prepared dish (7.2.3).
- 7.3.2 Heat the test portion and the dish (7.3.1) for 2 h in the drying oven (4.2) set at 102 °C.

7.3.3 Cool the test portion and the dish in the desiccator (4.3) to the temperature of the weighing room. Weigh the dish and its contents to the nearest 1 mg.

7.3.4 Repeat the drying procedure in 7.3.2 for additional periods of half an hour (see note in 7.2.2), and the cooling and weighing procedure in 7.3.3, until the difference in mass between two consecutive weighings of the dish does not exceed 1 mg or until the mass increases. Use the lowest mass for the calculation.

8 Calculation and expression of results

8.1 Calculation

Calculate the moisture content, w_m , using the following equation:

$$w_{\rm m} = \frac{(m_2 - m_4) - (m_1 - m_3)}{m_2 - m_0} \times 100 \%$$

where

- $w_{\rm m}$ is the moisture content of the sample, expressed as a mass fraction in percent;
- m_0 is the mass, in grams, of the prepared dish (7.2.3);
- m_1 is the mass, in grams, of the prepared dish used in the blank test (7.1) before drying (7.2.3);
- m_2 is the mass, in grams, of the test portion and the dish before drying (7.3.1);
- m_3 is the mass, in grams, of the dish used in the blank test (7.1) after drying (7.3.4);
 - https://standards.iteh.ai/catalog/standards/sist/eee97fc4-8110-4e42-ac98-
- m_4 is the mass, in grams, of the test portion and the dish7 after drying (7.3.4).

8.2 Expression of results

Express the test results to two decimal places.

9 Precision

9.1 Interlaboratory test

Details of an interlaboratory test on the precision of the method are summarized in annex A. The values derived from this interlaboratory test may not be applicable to concentration ranges and matrixes other than those given.

9.2 Repeatability

The absolute difference between two independent single test results, obtained using the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will in not more than 5 % of cases be greater than a mass fraction of 0,10 %.

9.3 Reproducibility

The absolute difference between two single test results, obtained using the same method on identical test material in different laboratories with different operators using different equipment, will in not more than 5 % of cases be greater than a mass fraction of 0,15 %.

10 Test report

The test report shall specify:

- all information required for the complete identification of the sample;
- the sampling method used, if known;
- the test method used, with reference to this part of ISO 3727 IDF 80;
- all operating details not specified in this part of ISO 3727 IDF 80, or regarded as optional, together with details of any incident which may have influenced the result(s);
- the test result(s) obtained and, if the repeatability has been checked, the final quoted results obtained.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 3727-1:2001</u> https://standards.iteh.ai/catalog/standards/sist/eee97fc4-8110-4e42-ac98a71a616eb2fa/iso-3727-1-2001

Annex A

(informative)

Results of interlaboratory trial

An international collaborative test involving ten laboratories and six countries was carried out on six samples divided into 12 blind duplicated samples.

Four samples were of unsalted butter and two samples were of salted butter. The test was organized by COKZ, Netherlands. The results obtained were subjected to statistical analysis in accordance with ISO 5725-1 and ISO 5725-2 to give the precision data shown in Table A.1.

NOTE IDF 135 provides specific guidance for interlaboratory tests on methods of analysis and milk products. It is based on ISO 5725.

	Unsalted butter				Salted butter	
	Α	В	С	D	E	F
No. of participating laboratories after eliminating outliers	9	9	9	9	9	9
Mean value, % mass fraction ITeh STANDA	15,61	15,51	15,83	15,66	14,76	15,75
Repeatability standard deviation, <i>s</i> _{<i>r</i>} , % (standard	s.0,036h	0,024	0,029	0,018	0,024	0,022
Coefficient of variation of repeatability, %	0,23	0,15	0,18	0,11	0,16	0,14
Repeatability limit r (2,8 s_r), % ISO 3727	1:2001 0,100	0,068	0,081	0,051	0,068	0,063
Reproducibility standard deviation, s_R , % a71a616eb2fa/isc	-3703061-2(010,044	0,043	0,049	0,050	0,038
Coefficient of variation of reproducibility, %	0,39	0,28	0,27	0,31	0,34	0,24
Reproducibility limit R (2,8 s_R), %	0,171	0,124	0,121	0,137	0,140	0,106

Table A.1 — Precision data