

Designation: A 1008/A 1008M - 04a Designation: A 1008/A 1008M - 04b

Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability¹

This standard is issued under the fixed designation A 1008/A 1008M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This specification covers cold-rolled, carbon, structural, high-strength low-alloy, and high-strength low-alloy with improved formability steel sheet, in coils and cut lengths.
 - 1.2 Cold rolled steel sheet is available in the designations as listed in 4.1.
 - 1.3 This specification does not apply to steel strip as described in Specification A 109/A 109M.
- 1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other.

2. Referenced Documents

2.1 ASTM Standards:²

A 109/A 109M Specification for Steel, Strip, Carbon (0.25 Maximum Percent), Cold Rolled

A 366/A 366M Specification for Commercial Steel (CS), Sheet, Carbon (0.15 Maximum Percentage), Cold-Rolled³

A 370 Test Methods and Definitions for Mechanical Testing of Steel Products

A 568/A 568M Specification for Steel, Sheet, Carbon, and High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for

A 620/A 620M Specification for Drawing Steel (DS), Sheet, Carbon, Cold-Rolled³

A 941 Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys

E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials

E 517 Test Method for Plastic Strain Ratio r for Sheet Metal

E 646 Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials

3. Terminology

- 3.1 *Definitions:*3.1.1 For definitions of other terms used in this specification, refer to Terminology A 941.
- 3.1.2 *stabilization*—the addition—addition of one or more nitride- or carbide-forming elements, or both, such as titanium and columbium, to control the level of the interstitial elements of carbon and nitrogen in the steel.
 - 3.1.2.1 Discussion—Stabilizing improves formability and increases resistance to aging.
- 3.1.3 *vacuum degassing*—a process—process of refining liquid steel in which the liquid is exposed to a vacuum as part of a special technique for removing impurities or for decarburizing the steel.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 aging—loss of ductility with an increase in hardness, yield strength, and tensile strength that occurs when steel that has been slightly cold worked (such as by temper rolling) is stored for some time.
 - 3.2.1.1 Discussion—Aging increases the tendency of a steel to exhibit stretcher strains and fluting.

4. Classification

4.1 Cold-rolled steel sheet is available in the following designations:

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.19 on Steel Sheet and Strip.

Current edition approved AprilJuly 1, 2004. Published AprilJuly 2004. Originally approved in 2000. Last previous edition approved in 2004 as A 1008/A 1008M – 04a.
² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

³ Withdrawn.

4 1008/A 1008M – 04b

- 4.1.1 Commercial Steel (CS Types A, B, and C),
- 4.1.2 Drawing Steel (DS Types A and B),

Note 1—CS Type B and DS Type B describe the most common product previously included, respectively, in Specifications A 366/A 366M and A 620/A 620M.

- 4.1.3 Deep Drawing Steel (DDS),
- 4.1.4 Extra Deep Drawing Steel (EDDS),
- 4.1.5 Structural Steel (SS grades 25[170], 30[205], 33[230] Types 1 and 2, 40[275] Types 1 and 2, 50[340], 60[410], 70[480], and 80[550]).
- 4.1.6 High-Strength Low-Alloy Steel (HSLAS, in classes 1 and 2, in grades 45[310], 50[340]. 55[380], 60[410], 65[450], and 70[480] in Classes 1 and 2), and
 - 4.1.7 High-Strength Low-Alloy Steel with Improved Formability (HSLAS-F grades 50[340], 60[410], 70[480], and 80[550]).
- 4.1.7.1 HSLAS-F steel has improved formability when compared to HSLAS. The steel is fully deoxidized, made to fine grain practice and includes microalloying elements such as columbium, vanadium, zirconium, etc. The steel shall be treated to achieve inclusion control.
- 4.2 When required for HSLAS and HSLAS-F steels, limitations on the use of one or more of the microalloy elements shall be specified on the order.
- 4.3 Cold-rolled steel sheet is supplied for either exposed or unexposed applications. Within the latter category, cold-rolled sheet is specified either "temper rolled" or "annealed last." For details on processing, attributes and limitations, and inspection standards, refer to Specification A 568/A 568M.

5. Ordering Information

- 5.1 It is the purchaser's responsibility to specify in the purchase order all ordering information necessary to describe the required material. Examples of such information include, but are not limited to, the following:
 - 5.1.1 ASTM specification number and year of issue;
- 5.1.2 Name of material and designation (cold-rolled steel sheet) (include grade, type, and class, as appropriate, for CS, DS, DDS, EDDS, SS, HSLAS, or HSLAS-F) (see 4.1);
 - 5.1.2.1 When a type is not specified for CS or DS, Type B will be furnished (see 4.1);
 - 5.1.2.2 When a class is not specified for HSLAS, Class 1 will be furnished (see 4.1);
 - 5.1.2.3 When a type is not specified for SS33[230] and SS40[275], Type 1 will be furnished (see 4.1);
 - 5.1.3 Classification (either exposed, unexposed, temper rolled, or annealed last) (see 4.3);
 - 5.1.4 Finish (see 9.1);
 - 5.1.5 Oiled or not oiled, as required (see 9.2);
 - 5.1.6 Dimensions (thickness, thickness tolerance table (see 5.1.6.1), width, and whether cut lengths or coils);
- 5.1.6.1 As agreed upon between the purchaser and the producer, material ordered to this specification will be supplied to meet the applicable thickness tolerance table shown in Specification A 568/A 568M;

Note 2—Not all producers are capable of meeting all the limitations of the thickness tolerance tables in Specification A 568/A 568M. The purchaser should contact the producer regarding possible limitations prior to placing an order.

- 5.1.7 Coil size (must include inside diameter, outside diameter, and maximum weight);
- 5.1.8 Copper bearing steel (if required);
- 5.1.9 Quantity;
- 5.1.10 Application (part identification and description);
- 5.1.11 Special requirements (if required), and
- 5.1.12 A report of heat analysis will be supplied, if requested, for CS, DS, DDS, and EDDS. For materials with required mechanical properties, SS, HSLAS, and HSLAS-F, a report is required of heat analysis and mechanical properties as determined by the tension test.

Note 3—A typical ordering description is as follows: ASTM A 1008-XX, cold rolled steel sheet, CS Type A, exposed, matte finish, oiled, 0.035 by 30 in. by coil, ID 24 in., OD 48 in., max weight 15 000 lbs, thickness tolerance Table 18 of Specification A 568/A 568M, 100 000 lb, for part No. 4560, Door Panel.

or:

ASTM A 1008M-XX, cold-rolled steel sheet, SS grade 275, unexposed, matte finish, oiled, 0.88 mm by 760 mm by 2440 mm, thickness tolerance Table A1.15 of Specification A 568/A 568M, 10 000 kg, for shelf bracket.

6. General Requirements for Delivery

6.1 Material furnished under this specification shall conform to the applicable requirements of the current edition of Specification A 568/A 568M unless otherwise provided herein.

7. Chemical Composition

7.1 The heat analysis of the steel shall conform to the chemical composition requirements of the appropriate designation shown in Table 1 for CS, DS, DDS, and EDDS and in Table 2 for SS, HSLAS, and HSLAS-F.

TABLE 1 Chemical Composition^A For Cold Rolled Steel Sheet Designations CS, DS, DDS, and EDDS

					Compositi	on, % He	eat Analysis							
	(Element Maximum Unless Otherwise Shown													
Designation	С	Mn	Р	S	Al	Si	Cu [₽]	Ni ^B	Cr ^{B,C}	Mo [₽]	V	Cb	Ti	N
CS Type A ^{D,E,F,G}	0.10	0.60	0.030	0.035			0.20 ^H	0.20	0.15	0.06	0.008	0.008	0.0081	
CS Type A ^{C,D,E,F}	0.10	0.60	0.030	0.035	<u></u>	<u></u>	0.20 ^G	0.20	0.15	0.06	0.008	0.008	0.008	<u></u>
CS Type B ^D	0.02 to	0.60	0.030	0.035			0.20 ^H	0.20	0.15	0.06	0.008	0.008	0.008/	
00 T DC	0.15	0.00	0.000	0.005			0.006	0.00	0.45	0.00	0.000	0.000	0.000	
CS Type B ^C	0.02 to 0.15	0.60	0.030	0.035	· · ·		0.20 ^G	0.20	0.15	0.06	<u>800.0</u>	0.008	0.008	····
CS Type CD.E.F.G	0.08	0.60	0.10	0.035			0.20 ^H	0.20	0.15	0.06	0.008	0.008	0.008^{1}	
CS Type C ^{C,D,E,F}	0.08	0.60	0.10	0.035	<u></u>	<u></u>	0.20 ^G	0.20	0.15	0.06	0.008	0.008	0.008	<u></u>
DS Type A ^{E,J}	0.08	0.50	0.020	0.030	0.01 min		0.20	0.20	0.15	0.06	0.008	0.008	0.008	
DS Type A ^{D,H}	0.08	0.50	0.020	0.030	0.01 min	<u></u>	0.20	0.20	0.15	0.06	0.008	0.008	0.008	<u></u>
DS Type B	0.02 to	0.50	0.020	0.030	0.02 min		0.20	0.20	0.15	0.06	0.008	0.008	0.008/	
	0.08													
DS Type B	0.02 to 0.08	0.50	0.020	0.030	0.02 min	<u></u>	0.20	0.20	0.15	0.06	<u>800.0</u>	0.008	0.008	<u></u>
DDS ^{F,G}	0.06	0.50	0.020	0.025	0.01 min		0.20	0.20	0.15	0.06	0.008	0.008	0.0081	
DDS ^{E,F}	0.06	0.50	0.020	0.025	0.01 min		0.20	0.20	0.15	0.06	0.008	0.008	0.008	<u></u>
EDDSK	0.02	0.40	0.020	0.020	0.01 min		0.10	0.10	0.15	0.03	0.008	0.10	0.15	
EDDS'	0.02	0.40	0.020	0.020	<u>0.01 min</u>	<u></u>	<u>0.10</u>	<u>0.10</u>	<u>0.15</u>	0.03	<u>0.10</u>	<u>0.10</u>	<u>0.15</u>	<u></u>

A Where an ellipsis (. . .) appears in the table, there is no requirement, but the analysis result shall be reported.

ESIt is peermify Typssible B to furnish as a vacuum degassed or chemidcarlly stabenilizevd steels, or both, at the prow 0.02% ducer's option.

- 7.2 Each of the elements listed in Table 1 and Table 2 shall be included in the report of the heat analysis. When the amount of copper, nickel, chromium, or molybdenum is less than 0.02%, report the analysis as <0.02% or the actual determined value. When the amount of vanadium, columbium, or titanium is less than 0.008%, report the analysis as <0.008% or the actual determined value.
- 7.3 Sheet steel grades defined by this specification are suitable for welding if appropriate welding conditions are selected. For certain welding processes, if more restrictive composition limits are desirable, they shall be specified at the time of inquiry and confirmed at the time of ordering.

8. Mechanical Properties

- 8.1 CS, DS, DDS, and EDDS:
- 8.1.1 Typical nonmandatory mechanical properties for CS, DS, DDS and EDDS are shown in Table 3.
- 8.1.2 The material shall be capable of being bent, at room temperature, in any direction through 180° flat on itself without cracking on the outside of the bent portion (see Section 14 of Test Methods and Definitions A 370).
- 8.1.3 Sheet of these designations except for EDDS are subject to aging dependent upon processing factors such as the method of annealing (continuous annealing or box annealing), and chemical composition. For additional information on aging, see Appendix X1 of Specification A 568/A 568M.
- 8.1.4 EDDS steel is stabilized to be nonaging and so is not subject to stretcher strains and fluting. Other steels are processed to be nonaging; please consult your supplier.
 - 8.2 SS. HSLAS and HSLAS-F:
 - 8.2.1 The available strength grades for SS, HSLAS and HSLAS-F are shown in Table 4.
 - 8.2.2 Tension Tests:
- 8.2.2.1 *Requirements* Material as represented by the test specimen shall conform to the mechanical property requirements specified in Table 4. These requirements do not apply to the uncropped ends of unprocessed coils.
- 8.2.2.2 *Number of Tests* Two tension tests shall be made from each heat or from each 50 tons [45 000 kg]. When the amount of finished material from a heat is less than 50 tons [45 000 kg], one test shall be made. When material rolled from heat differs 0.050 in. [1.27 mm] or more in thickness, one tension test shall be made from the thickest and thinnest material regardless of the weight represented.

^B TChe sromium of eo is pper, nmiektteld, e at the promium, and molybdenumcer'shall n opt exceedion, to 0.250 % on he mat analysxis. When one ormore of turn whose elemen to is specified by the pur chaser, the sum documents apply, in which case onlythe indtividuals I limites on the remaining or elements should apply to 0.05 %.

C SWhreen an aluminum deoxidized s-pteel is rmequittred, a for t-the aproducer's oplication, ite 0.25% max imum whs pen the earbon content missibless than ordequal tr Co 0.05%. In summerch classel Stheelimi (CS) to a min the simum of 0.01% the four etale aluments in Footnote B does not apply um.

WhSpen an alumcinum of Typeoxidized s B teel is required for the applyoid cation, it is permissibon to to ordiver Commercial Sts beel (CS) to a minimum of w 0.012 % total aluminum.

FHFor carbon levels less than or equal to 0.02 %, it is permissible to-f urnish as ae vanadium, columbium deg or titassednium, or a cheombienallytion thereof, as stabilizing ed stlemel, or bonth; at the producer's option. In such cases, the applicable limit for vanadium or columbium shall be 0.10 % max. and the limit on titanium shall be 0.15 % max.

Ger For When carbon Ippevelr s less than or equael to 0.02%, it is sperm cissfibled, to ushe copper lumbium or tit is a minimum, or r-both, as stabequilizing relements at t. Whe produn copper's optical ios n. Inot supech casifiesd, the a copplicabler limit for columb jums hall be 0.10% max- and the limit on titanium shall b re 0.15% quiremaxent.

H When copper steel is specified, the copper limit is a minimum requirement. When copper steel is not specified, the copper limit is a maximum requirement.

Except for EDDS, titanium is permitted, at producer's option, to 0.025% provided the ratio of % titanium to % nitrogen does not exceed 3.4.

It is permissible to furnish DS Type A as a vacuum degassed steel, at the producers option.

^{*!} Shall be furnished as a vacuum degassed and stabilized steel.

TABLE 2 Chemical Composition^A For Cold Rolled Steel Sheet Designations SS, HSLAS, and HSLAS-F

% Heat Analysis, Element Maximum unless otherwise shown													
Designation	С	Mn	Р	S	Al Si	Cu ^{B,C}	Ni ⁸	Cr [₽]	Mo ⁸	V	Cb	<u>Ti</u>	N
SS:													
Grade 25 [170]	0.20	0.60	0.035	0.035			0.20	0.15	0.06	0.008	0.008		
Grade 25 [170]	0.20	0.60	0.035	0.035	· · · · · · · · · · · · · · · · · · ·	. 0.20	0.20	0.15	0.06	0.008	0.008	0.008	
Grade 30 [205]	0.20	0.60	0.035	0.035			0.20	0.15	0.06	0.008	0.008		
Grade 30 [205]	0.20	0.60	0.035	0.035	<u></u>	0.20	0.20	0.15	0.06	0.008	0.008	0.008	<u></u>
Grade 33 [230] Type 1	0.20	0.60	0.035	0.035			0.20	0.15	0.06	0.008	0.008		===
Grade 33 [230] Type 1	0.20	0.60	0.035	0.035			0.20	0.15	0.06	0.008	0.008	0.008	
Grade 33 [230] Type 2	0.20 0.15	0.60	0.20	0.005	··· ··		0.20	0.15 0.15	0.06	0.008	0.008	0.000	···
Grade 33 [230] Type 2	0.15	0.60	0.20	0.035			0.20	0.15	0.06	0.008	0.008	0.008	• • • •
		0.00	0.20 0.035		···· ··		0.20	0.15 0.15	0.06		0.008	0.008	· · ·
Grade 40 [275] Type 1	0.20			0.035						0.008		0.000	
Grade 40 [275] Type 1	0.20	0.90	0.035	0.035	· · · · · ·	0.20	0.20	0.15	0.06	0.008	0.008	0.008	<u></u>
Grade 40 [275] Type 2	0.15	0.60	0.20	0.035			0.20	0.15	0.06	0.008	0.008		
Grade 40 [275] Type 2	0.15	0.60	0.20	0.035	<u></u>	0.20	0.20	0.15	0.06	0.008	0.008	0.008	
Grade 50 [340]	0.20	0.70	0.035	0.035		0.20	0.20	0.15	0.06	0.008	0.008		
Grade 50 [340]	0.20	0.70	0.035	0.035	<u></u>	. 0.20	0.20	0.15	0.06	0.008	0.008	0.008	
Grade 60 [410]	0.20	0.70	0.035	0.035			0.20	0.15	0.06	0.008	0.008		
Grade 60 [410]	0.20	0.70	0.035	0.035	<u> </u>	0.00	0.20	0.15	0.06	0.008	0.008	0.008	<u></u>
Grade 70 [480]	0.20	0.70	0.035	0.035	<u> </u>		0.20	0.15	0.06	0.008	0.008	0.000	-
Grade 70 [480]	0.20	0.70	0.035	0.035			0.20	0.15	0.06	0.008	0.008	0.008	
Grade 80 [550]	0.20	0.70	0.035	0.035	··· ··		0.20	0.15	0.06	0.008	0.008	0.000	
						0.00						0.000	
Grade 80 [550]	0.20	0.60	0.035	0.035	··· ··	0.20	0.20	0.15	0.06	0.008	<u>800.0</u>	0.008	
HSLAS: ^C HSLAS: ^C Grade 45 [310] Class 1	0.22	1.65	0.04	0.04	 	. 0.20	0.20	0.15	0.06	0.01 min	0.005 min		
Grade 45 [310] Class 1	0.22	1.65	0.04	0.04		0.00	0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	
Grade 45 [310] Class 2	0.15	1.65	0.04	0.04	<u>:::</u> ::		0.20	0.15	0.06	0.01 min	0.005 min	0.000 111111	···
Grade 45 [310] Class 2	0.15	1.65	0.04	0.04		0.00	0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	
					L			0.15	0.06			0.003 11111	
Grade 50 [340] Class 1	0.23	1.65	0.04	0.04	1		0.20			0.01 min	0.005 min	0.005	
Grade 50 [340] Class 1	0.23	1.65	0.04	0.04	<u></u>		0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	<u></u>
Grade 50 [340] Class 2	0.15	1.65	0.04	0.04			0.20	0.15	0.06	0.01 min	0.005 min		
Grade 50 [340] Class 2	<u>0.15</u>	1.65	0.04	0.04	1 12		0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	
Grade 55 [380] Class 1	0.25	1.65	0.04	0.04) [l]	0.20	0.20	0.15	0.06	0.01 min	0.005 min		
Grade 55 [380] Class 1	0.25	1.65	0.04	0.04	<u></u>	. 0.20	0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	<u> </u>
Grade 55 [380] Class 2	0.15	1.65	0.04	0.04			0.20	0.15	0.06	0.01 min	0.005 min		
Grade 55 [380] Class 2	0.15	1.65	0.04	0.04	<u>m.e.</u>	0.00	0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	
Grade 60 [410] Class 1	0.26	1.65	0.04	0.04			0.20	0.15	0.06	0.01 min	0.005 min		-
Grade 60 [410] Class 1	0.26	1.65	0.04	0.04		0.00	0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	
Grade 60 [410] Class 2	0.20	1.65	0.04	0.04	<u> </u>		0.20	0.15	0.06	0.003 min	0.005 min	0.005 min	 E
						0/410	0.20						
Grade 60 [410] Class 2	0.15	1.65	0.04	0.04	<u>VI.A.I.U.</u>			0.15	0.06	0.005 min	0.005 min	0.005 min	
Grade 65 [450] Class 1	0.26	1.65	0.04	0.04	1 2 7 3 1 7		0.20	0.15	0.06	0.01 min	0.005 min	0.005 min	8110
Grade 65 [450] Class 1	0.26	1.65	0.04	0.04	1 015 1-0		0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	OH₽.
3rade 65 [450] Class 2	0.15	1.65	0.04	0.04			0.20	0.15	0.06	0.01 min	0.005 min	0.005 min	
Grade 65 [450] Class 2	0.15	1.65	0.04	0.04	· · · · · · · · · · · · · · · · · · ·		0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	D
Grade 70 [480] Class 1	0.26	1.65	0.04	0.04	 		0.20	0.15	0.06	0.01 min	0.005 min	0.005 min	E
Grade 70 [480] Class 1	0.26	1.65	0.04	0.04	<u></u>	0.00	0.20	0.15	0.16	0.005 min	0.005 min	0.005 min	D
Grade 70 [480] Class 2	0.15	1.65	0.04	0.04			0.20	0.15	0.06	0.01 min	0.005 min	0.005 min	₽
Grade 70 [480] Class 2	0.15	1.65	0.04	0.04		0.00	0.20	0.15	0.16	0.005 min	0.005 min	0.005 min	D
HSLAS F: ^F HSLAS-F: ^C Grade 50 [340], 60[410],	<u>0.10</u>	1.00	<u>0.0 i</u>	<u>0.0 1</u>	··· ··	<u>. 0.20</u>	0.20	<u>0.10</u>	<u>0.10</u>	<u>0.000 mm</u>	<u>0.000 min</u>	<u>0.000 mm</u>	
70[480], and 80 [550]	0.15	1.65	0.020	0.025		0.20	0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	Đ
						0.00							D
Grade 50 [340] and 60 [410]	0.15	1.65	0.020	0.025	· · · ·		0.20	0.15	0.06	0.005 min	0.005 min	0.005 min	₽
Grade 70 [480] and 80 [550]	0.15	1.65	0.020	0.025		0.20	0.20	0.15	0.16	0.005 min	0.005 min	0.005 min	
Grade 70 [480] and 80 [550]	0.15	1.65	0.020	0.025		. 0.20	0.20	0.15	0.16	0.005 min	0.005 min	0.005 min	D

^A Where an ellipsis (. . .) appears in the table, there is no requirement but, the analysis shall be reported.

- 8.2.2.3 Tension test specimens shall be taken at a point immediately adjacent to the material to be qualified.
- 8.2.2.4 Tension test specimens shall be taken from the full thickness of the sheet.
- 8.2.2.5 Tension test specimens shall be taken from a location approximately halfway between the center of the sheet and the edge of the material as rolled.

B TWhe sum ofn copper, n is speckifield, e thre compper lium; it is and melybdeinimum shall not rexequire med ont.50%. When conppe or more of sthese eleme is not sare specified by the purchaser, the sum d coes not apply, in which case, onr ly the individual limit is on the rea maxining munspm reequificed elements will apply

C WheHSLAS and HSLAS-F steels copputain the strengthenis spng elements columbifum (nieobium), vanadium, the eitanium, and mopplybdernum added singly or in combinatis aon. The minimum requirement. When es only apply to the micr-stoalloy eel-isemenetsp seeifiled, the ed fopper-limit is a maximum trequire mening of the steel.

For HSLAS steels, it is permissible to add columbium and vanadium singly or in combination.

End purchaser has the option of restricting the nitrogen content. It should be noted that, depending on the microalloying scheme (for example, use of Vanadium) of the producer, nitrogen may be a deliberate addition. Consideration should be made for the use of nitrogen binding elements (for example, Vanadium, Titanium).

These steels shall also contain one or more of the following elements: Vanadium, Titanium, and Columbium. Other alloying elements are permissible, but are not required).