INTERNATIONAL STANDARD

Third edition 2005-02-15

Continuously hot-rolled steel sheet of structural quality with improved atmospheric corrosion resistance

Tôles en acier de construction laminées à chaud en continu à résistance améliorée à la corrosion atmosphérique

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5952:2005</u> https://standards.iteh.ai/catalog/standards/sist/8632d899-afcc-483a-963df664412d4410/iso-5952-2005

Reference number ISO 5952:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5952:2005</u> https://standards.iteh.ai/catalog/standards/sist/8632d899-afcc-483a-963df664412d4410/iso-5952-2005

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forewo	ord	iv
1	Scope	.1
2	Normative references	1
3	Terms and definitions	2
4 4.1 4.2	Surface characteristics Surface condition Oiling	2
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Conditions of manufacture	3 3 3 4 4 4
6	Dimensional tolerancesSTANDARD PREVIEW	4
7	Tensile test sampling(standards.itch.ai)	4
8	Tensile test requirements	4
9 9.1 9.2 9.3	ISO 5952:2005 Machining and flawslards.iteh.ai/catalog/standards/sist/8632d899-afcc-483a-963d- Elongation f664412d4410/iso-5952-2005 Additional tests	5 5 6
10	Resubmission	6
11	Workmanship	6
12	Inspection and acceptance	6
13	Coil size	6
14	Marking	7
15	Information to be supplied by the purchaser	7
Annex	A (informative) Guidelines for estimating the atmospheric corrosion resistance of low- alloy steels	. 8
Annex	B (informative) Additional information for the use of steel with improved atmospheric corrosion resistance	9
Bibliog	raphy	10

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 5952 was prepared by Technical Committee ISO/TC 17, *Steel*, Subcommittee SC 12, *Continuous mill flat rolled products*.

This third edition cancels and replaces the second edition (ISO 5952:1998), which has been technically revised. (standards.iteh.ai)

<u>ISO 5952:2005</u> https://standards.iteh.ai/catalog/standards/sist/8632d899-afcc-483a-963df664412d4410/iso-5952-2005

Continuously hot-rolled steel sheet of structural quality with improved atmospheric corrosion resistance

1 Scope

1.1 This International Standard applies to continuously hot-rolled steel sheet (see 3.2) of structural quality having improved atmospheric corrosion resistance, also known as weather-resistant structural steel. It is produced in the grades and classes listed in Tables 1 and 2. The product is intended for applications where requirements are for mechanical properties and increased resistance to atmospheric corrosion. It is generally used in the delivered condition and is intended for bolted, riveted or welded structures.

1.2 This product is commonly produced in the range of thicknesses 1,6 mm up to and including 12,5 mm and widths of 600 mm and over, in coils and cut lengths.

1.3 Hot-rolled sheet less than 600 mm wide may be slit from wide sheet and will be considered as sheet.

NOTE Hot-rolled sheet up to but not including 3 mm in thickness is commonly known as sheet. Hot-rolled sheet 3 mm and over in thickness is commonly known as either "sheet" or "plate".

- 1.4 This International Standard does not cover the following steel qualities:
- steels intended for boilers or pressure vessels, 200 steels designated as commercial quality or drawing qualities (see ISO 3573); dards.iteh.ai/catalog/standards/sist/8632d899-afcc-483a-963dt664412d4410/iso-5952-2005
- steels produced on reversing mills and designated as improved atmospheric corrosion resistance (see ISO 4952);
- steels designated as structural quality (see ISO 4995), or high yield strength structural quality (see ISO 4996);
- steels designated as higher yield strength with improved formability (see ISO 5951).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 148:1983, Steel — Charpy impact test (V-notch)

ISO 6892:1998, Metallic materials — Tensile testing at ambient temperature

ISO 16160:2000, Continuously hot-rolled steel sheet products — Dimensional and shape tolerances

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

improved atmospheric corrosion resistance

a characteristic achieved by intentional addition of a certain number of alloying elements such as P, Cu, Cr, Ni, etc.; providing a chemical composition which promotes the formation of a protective oxide layer on the product

NOTE The degree of corrosion resistance is based on data acceptable to the purchaser.

3.2

hot-rolled steel sheet

a product obtained by rolling heated steel through a continuous-type wide strip mill to the required sheet thickness

NOTE The product has a surface covered with oxide or scale resulting from the hot-rolling operation.

3.3

3.4

hot-rolled descaled steel sheet

hot-rolled steel sheet from which oxide or scale has been removed by pickling in an acid solution or by mechanical means such as grit blasting

NOTE Some change in properties may result from mechanical descaling.

iTeh STANDARD PREVIEW

mill edge

a normal edge without any definite contour produced in hot rollingen.ai)

NOTE Untrimmed edges may contain some irregularities, such as cracked or torn edges or thin (feathered) edges.

https://standards.iteh.ai/catalog/standards/sist/8632d899-afcc-483a-963df664412d4410/iso-5952-2005

3.5 sheared edge

a normal edge obtained by shearing, slitting or trimming a mill edge product

NOTE 1 Normal processing does not necessarily provide a definite positioning of the slitting burr.

NOTE 2 Material is normally supplied as described in 3.4 and 3.5. Other edges may be supplied as agreed upon.

4 Surface characteristics

4.1 Surface condition

Oxide or scale in hot-rolled steel sheet is subject to variations in thickness, adherence and colour. Removal of the oxide or scale by pickling or blast cleaning may disclose surface imperfections not readily visible prior to this operation.

4.2 Oiling

As a deterrent to rusting, a coating of oil is usually applied to hot-rolled, descaled steel sheet, but sheet may be furnished unoiled, if required. The oil is not intended as a forming lubricant and shall be easily removable with degreasing chemicals.

When requested, the manufacturer shall advise the purchaser which type of oil has been used.

5 Conditions of manufacture

5.1 Steelmaking

Unless otherwise agreed upon, the processes used in making the steel and in manufacturing hot-rolled sheet are left to the discretion of the manufacturer. On request, the purchaser shall be informed of the steelmaking process being used.

5.2 Chemical composition

5.2.1 The chemical composition (heat analysis) shall conform to the values given in Table 1, unless otherwise agreed between the interested parties.

5.2.2 When selecting the grade or chemical composition to be used, attention should be directed to the appropriate welding procedure to be followed (see 5.4).

5.3 Chemical analysis

5.3.1 Heat analysis:

An analysis of each heat of steel shall be made by the manufacturer to determine compliance with the requirements given in Table 1. When requested, at the time of ordering, this analysis shall be reported to the purchaser or his representative.

letangrae Iten all												
Grade	Class ^a	Method ^b	c	Mn	Si	Р	S	Cu	Ni	Cr	Мо	Zr
HSA 235W	B D	NE h @S s://st	0,13 andnax.ite	0,20 to h. :0,60 alc	10,900 to g/s0,40ard	200,040 s/s imáx 632	0,035 dmax.fc	0,25 to :- 40,5 596	0,65 3 d max.	0,40 to 0,80		
HSA 245W	B D	NE CS	0,18 max.	1,25 max.	015 to 0,65	-5052-20 0,035 max.	⁰⁵ 0,035 max.	0,30 to 0,50	0,05 to 0,30	0,45 to 0,75	С	с
HSA 355W1	A D	NE CS	0,12 max.	1,00 max.	0,20 to 0,75	0,06 to 0,15	0,035 max.	0,25 to 0,55	0,65, max.	0,30 to 1,25		
HSA 355W2	C D	NE CS	0,16 max.	0,50 to 1,50	0,50 max.	0,035 max.	0,035 max.	0,25 to 0,55	0,65 max.	0,40 to 0,80	0,30 max.	0,15 max.
HSA 365W	B D	NE CS	0,18 max.	1,40 max.	0,15 to 0,65	0,035 max.	0,035 max.	0,30 to 0,50	0,05 to 0,30	0,45 to 0,75	с	с

iTeh STANDARD PREVIEW

Table 1 — Chemical composition (heat analysis) (normal standard compositions, see 5.2) %

NOTE Each grade may contain one or more microalloying elements such as vanadium, titanium, niobium, etc.

a Class A steels satisfy only moderate loading conditions.

Class B steels are intended for use in welded structures or structural parts, subjected to normal loading conditions.

Class C steels are to be used in cases where, owing to loading conditions, and the general design of the structure, some resistance to brittle fracture is necessary.

Class D steels are to be used for structures or structural parts where, owing to loading conditions and the general design of the structure, a high resistance to brittle fracture is necessary.

NE — non-rimming

CS - aluminum killed (0,020 % minimum total aluminum)

Total content of Mo, Nb, Ti, V and Zr not to exceed 0,15 %.

5.3.2 Product analysis

A product analysis may be made by the purchaser to verify the specified analysis of the product and shall take into consideration any normal heterogeneity. For killed steels, the sampling method and deviation limits shall be agreed upon between the interested parties at the time of ordering.

5.4 Weldability

This product is suitable for welding if appropriate welding conditions are selected. See the recommendations given in IIS/IIW 382-71 as an example.

5.5 Application

It is desirable that the specified product be identified for fabrication by name of the part or by intended application. Proper identification of the part may include visual examination, prints or description, or a combination of these.

5.6 Mechanical properties

At the time that the steel is made available for shipment, the mechanical properties shall be as stated in Table 2 when they are determined on test pieces obtained according to the requirements of Clause 8. Any additional property requirements specified or required are subject to agreement before ordering.

5.7 Corrosion resistance iTeh STANDARD PREVIEW

The resistance of these steels to atmospheric corrosion is due to the formation of a protective oxide layer. The formation of this protective layer depends not only on chemical composition, such as the distinctive differences between the analyses of the various grades, but also on a number of factors such as surrounding atmosphere, design, etc., over which the steel producer has no control. See Annexes A and B for information on estimating the corrosion resistance and cautions concerning the use of these steels³d-

f664412d4410/iso-5952-2005

6 Dimensional tolerances

Dimensional tolerances applicable to hot-rolled steel sheet of structural quality with improved atmospheric corrosion resistance shall be as given in ISO 16160.

7 Tensile test sampling

One representative sample for the tensile test required in Table 2 shall be taken from each lot of sheet for shipment. A lot consists of 50 t or less of sheet of the same designation rolled to the same thickness and condition.

8 Tensile test requirements

The tensile test shall be carried out in accordance with ISO 6892. Transverse test pieces shall be taken midway between the centre and edge of the sheet as rolled.

Grade	Class ^a	R _e b min. N/mm ²	<i>R</i> N/n	m 1M²	A ^c min %						
			Nominal thickness		$e < 3$ $3 \le e \le 6$				6 < <i>e</i>		
					mm		mm		mm		
			< 3 ≥ 3		L _o = 50	L ₀ = 80	$L_{0} = 5,65\sqrt{S_{0}}$	$L_0 = 50$	$L_{0} = 5,65\sqrt{S_{0}}$	$L_0 = 200$	
					mm	mm	mm	mm	mm	mm	
HSA 235W	B and D	235	360 to 510	340 to 470	20	18	24	22	24	17	
HSA 245W	B and D	245	400 te	o 540	20	18	24	22	24	17	
HSA 355W1	A and D	355	510 to 680	490 to 630	15	15	20	19	24	18	
HSA 355W2	C and D	355	510 to 680	490 to 630	18	15	20	22	24	18	
HSA 365W	B and D	365	490 te	o 610	15	12	17	19	21	15	
R _e = yield strength											
$R_{\rm m}$ = tensile strength											
<i>A</i> = percentage elongation after fracture											
L_{o} = gauge length on test piece											
e = thickness	of steel sl	heet, in	millimetres	ANDA	RD	PRF	VIEW				
S_{o} = original of	cross-sect	ional are	ea of gauge	length	de it	ah ai					
1 N/mm ² = 1	MPa		(sta	anuar	us.10		L)				
a Class A st	eels satisfy	only mo	derate loading	conditions.5	952:2005						
Class B st	eels are int	ttps://sta tended fo	ndards.iteh.ai r use in welde	catalog/stanced structures	lards/sist/8 or structura	3632d899 al parts, si	-afcc-483a-963 ubjected to norma	d- al loading o	conditions.		
Class C steels are to be used in cases where, owing to loading conditions, and the general design of the structure, some resistance to brittle fracture is necessary.											
Class D s structure,	Class D steels are to be used for structures or structural parts where, owing to loading conditions and the general design of the structure, a high resistance to brittle fracture is necessary.										
While not and over i	While not usually specified, if so agreed at the time of ordering, impact tests may be specified for material of Class C or D, 6 mm and over in thickness.										
The test p notch test	The test pieces shall be in the longitudinal direction and the test shall be carried out in accordance with ISO 148 for the Charpy V- notch test.										
^b The yield $R_{p0,2}$ when	The yield strength can be measured either by 0,5 % total elongation proof stress $R_{t0,5}$ (proof stress under load) or by 0,2 % offset $R_{00,2}$ when a definite yield phenomenon is not present.										
^c For thickn $L_0 = 50 \text{ m}$ obtained c	For thicknesses up to 3 mm, use either $L_0 = 50$ mm or $L_0 = 80$ mm. For thicknesses 3 mm incl. to 6 mm incl., use $L_0 = 5,65\sqrt{S_0}$ or $L_0 = 50$ mm. For thicknesses 6 mm and over, use $L_0 = 5,65\sqrt{S_0}$ or $L_0 = 200$ mm. In case of dispute, however, only the results obtained on a proportional test piece will be valid for material 3 mm and over in thickness.										

Table 2 — Mechanical properties

9 Retests

9.1 Machining and flaws

If any test piece shows defective machining or develops flaws, it shall be discarded and another specimen substituted.