

SLOVENSKI STANDARD SIST EN 13445-2:2009/oprA1:2011

01-marec-2011

Neogrevane tlačne posode - 2. del: Materiali - Dopolnilo A1

Unfired pressure vessels - Part 2: Materials

Unbefeuerte Druckbehälter - Teil 2: Werkstoffe

Recipients sous pression non soumis à la flamme - Partie 2: Matériaux

Ta slovenski standard je istoveten z: EN 13445-2:2009/prA1

ICS:

23.020.30 Tlačne posode, plinske

jeklenke

Pressure vessels, gas

cylinders

SIST EN 13445-2:2009/oprA1:2011 en,fr,de

SIST EN 13445-2:2009/oprA1:2011

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM DRAFT EN 13445-2:2009

prA1

November 2010

ICS 23.020.30

English Version

Unfired pressure vessels - Part 2: Materials

Recipients sous pression non soumis à la flamme - Partie 2: Matériaux

Unbefeuerte Druckbehälter - Teil 2: Werkstoffe

This draft amendment is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee CEN/TC 54.

This draft amendment A1, if approved, will modify the European Standard EN 13445-2:2009. If this draft becomes an amendment, CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for inclusion of this amendment into the relevant national standard without any alteration.

This draft amendment was established by CEN in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Warning: This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents	Page
Foreword	3

Foreword

This document (EN 13445-2:2009/prA1:2010) has been prepared by Technical Committee CEN/TC 54 "Unfired pressure vessels", the secretariat of which is held by BSI.

This document is currently submitted to the CEN Enquiry.

This document includes the text of the amendment itself. The corrected pages of EN 13445-2 will be delivered as issue xx of the standard.

Replace tables B.2-2 and B.2-3 in chapter B 2.2.2 with the following revised tables:

Table B.2-2 — General requirements for prevention of brittle fracture with reference thickness for plates and strips

Plates and Strips								
No.	European	Grade	Material Max. reference		Design	Material	Remarks	
as per	Standard		No.	thickness		reference	group to	
Table					e _B	temperature	CR ISO	
D.2-1				AW	PWHT	T _R (°C)	15608:2000	
1	EN	P235GH	1.0345	35	200		4.4	
2	EN	P265GH	1.0425	35	200	20	1.1	
3	10028- 2:2003	P295GH	1.0481	35	110	- 20	4.0	
4	2.2003	P355GH	1.0473	35	70		1.2	
29		P275NH	1.0487	35	200	– 20		
30		P275NL1	1.0488	35	200	- 40	1.1	
31	EN	P275NL2	1.1104	35	200	– 50		
32	10028-	P355N	1.0562	35	70	– 20		
33	3:2003	P355NH	1.0565	35	70	– 20	4.0	
34		P355NL1	1.0566	35	70	- 40	1.2	
35		P355NL2	1.1106	35	70	– 50		
39	EN	11MnNi5-3	1.6212	35	50	– 60		
40	10028-	13MnNi6-3	1.6217	35	50	– 60	9.1	
41	4:2003	15NiMn6	1.6228	35	50	- 80		
50		P355M	1.8821	35	-	– 20		a)
51		P355ML1	1.8832	35	-	- 40	1.2	a)
52	EN	P355ML2	1.8833	35	-	– 50		a)
53	10028-	P420M	1.8824	35	-	– 20		a)
54	5:2003	P420ML1	1.8835	32	-	- 40	2.1	a)
55	1	P420ML2	1.8828	32	-	– 50		a)
59	ENI	P355Q	1.8866	35	70	– 20		
60	EN	P355QH	1.8867	35	70	- 20	1.2	
61	10028-	P355QL1	1.8868	35	70	- 40		
62	6:2003	P355QL2	1.8869	35	70	– 60	3.1	
a) TMCP steels shall not be Post Weld Heat Treated								

Table B.2–3 — General requirements for prevention of brittle fracture with reference thickness for seamless and welded tubes

Seamless and welded tubes								
No.	European	Grade	Material	Max. reference		Design	Material	Remarks
as per	Standard		No.	thickness		reference	group to	
Table				e	В	temperature	CR ISO	
D.2-1				AW	PWHT	T_{R} (°C)	15608:2000	
231		P275NL1	1.0488	35	40	- 40	1.1	a)
232	EN	P275NL2	1.1104	35	40	– 50	1.1	a)
233	10216-	P355N	1.0562	35	40	- 20		a)
234	3:2002	P355NH	1.0565	35	40	- 20	1.2	a)
235	3.2002	P355NL1	1.0566	35	40	- 40	1.2	a)
236	1	P355NL2	1.1106	35	65	– 50		a)
248		P215NL	1.0451	10	10	- 40		a)
249]	P255QL	1.0452	35	40	- 40	1.1	a)
250	EN 10216-	P265NL	1.0453	25	25	- 40		a)
251	4:2002	26CrMo4-2	1.7219	15	40	- 60	5.1	a)
252	4.2002	11MnNi5-3	1.6212	35	40	- 60	9.1	a)
253		13MnNi6-3	1.6217	35	40	- 60	9.1	a)
306		P275NL1	1.0488	35	40	- 40	1.1	a)
307]	P275NL2	1.1104	35	40	– 50	1.1	a)
308	EN 10217-	P355N	1.0562	35	40	- 20		a)
309	3:2002	P355NH	1.0565	35	40	- 20	1.2	a)
310	3.2002	P355NL1	1.0566	35	40	- 40	1.2	a)
311		P355NL2	1.1106	35	40	– 50		a)
316	EN	P215NL	1.0451	10	10	- 40	1.1	a)
317	10217-	P265NL	1.0453	16	16	- 40	1.1	a)
	4:2002							
321	EN	P215NL	1.0451	10	10	- 40	1.1	a)
322	10217-	P265NL	1.0453	25	25	- 40	1.1	a)
ľ	6:2002							

a) Thickness limitation results from wall thickness limitation in the European material standard and in the European component standards respectively.

Add to chapter B2.2.2 Ferritic steels below Table B.2-2 the following sentence:

If planned component thickness is higher than given in table B.2-2 alternative Charpy toughness requirements are provided in chapter B.2.3.1.

Replace text in chapter B2.3.1 with the following text and tables:

This method 2 applies to C, CMn, fine grain steels, Ni-alloyed steels with not more than 1,5 % of Ni-alloyed steels with not more than 1.5 % Ni with a specified minimum yield strength \leq 500 MPa and austenitic-ferritic steels with a specified minimum yield strength \leq 550 MPa. This method 2, based on fracture mechanics [16,32] can be used to determine the requirements to avoid brittle fracture in these steels, and may be used at a design reference temperature T_R which is lower than the value derived by method 1. In this procedure the design reference temperature T_R is not equal to the impact test temperature T_R . The diagrams show the relationship between T_R and T_{KV} depending on reference thickness and strength level. Distinction is made for as-welded (AW) and post weld heat treated (PWHT) condition. This method does not apply to

thermomechanically-rolled steels thicker than 35 mm. Two alternatives are provided in Tables B.2-13 and B.2-14 (Nomograms for references thickness up to 35 mm in AW-condition and up to 110 mm in PWHT condition) and table B.2-15 (for reference thickness up to 200 mm).

For constructional details reference thickness $e_{\rm B}$ is defined in Table B.4-1.

Table B.2–13 and B.2–14 show which figure shall be used to determine the impact test temperature $T_{\rm KV}$ or the design reference temperature $T_{\rm R}$ up to the given thickness in the nomograms. The condition "non-welded" shall be treated as the condition PWHT. Parent material, welds and HAZ shall meet the impact energy KV at impact test temperature $T_{\rm KV}$.

Table B.2-15 provides toughness requirements for products with thickness up to 200 mm in PWHT condition. The weld metal, the heat affected zone and other parts affected by manufacturing processes shall satisfy the same impact energy requirements as the guaranteed minimum properties for the base material at $T_{\rm R}$ given in the table.

NOTE Table B.2-15 complies with method 2 basic principles and allows the use of pressure components with reference thickness e_B up to 200 mm thickness, when Nomograms of Method 2 do not apply anymore. However the application of table B.2-14 for lower thicknesses than 110 mm is not restricted, but will result in higher toughness requirements as can be derived from Figures B.2-1 to B.2-7 or method 1.

Linear interpolation between strength and thickness levels given in the Figures B.2–1 to B.2–11 is allowed. Alternatively the next higher strength class or wall thickness can be used. Lower test temperatures than $T_{\rm KV}$ are admissible for the same requirements.

The temperature adjustment given in Table B.2–12 applies also to method 2. Extrapolations for temperature ranges beyond the temperature ranges as given in the nomograms are not permissible.

Table B.2–13 — Impact energy requirements for C, CMn, fine grain steels, Ni-alloyed steels with less than 3,0 % Ni

Specified minimum yield strength of base material	Required impact energy KV (on 10 mm $ imes$ 10 mm test pieces)	Figure defining required $T_{ m KV}$	
MPa	J	Non welded or post-weld heat treated	As welded
$R_{\rm e} \le 265$	27	B.2-1	B.2-2
$R_{\rm e} \le 355$	27	B.2-3	B.2-4
$R_{\rm e} \le 460$	40	B.2-5	B.2-6
$R_{\rm e} \le 500$	40	B.2-7	B.2-8

Table B.2-14 — Impact energy requirements for austenitic-ferritic stainless steels

Specified minimum yield strength of base material	Required impact energy <i>KV</i> (on 10 mm x 10 mm test pieces)	Figure defining required $T_{ m KV}$
N/mm²	J	for all applications
$R_{\rm e} \le 385$	40	B.2-9
<i>R</i> _e ≤ 465	40	B.2-10
$R_{\rm e} \le 550$	40	B.2-11

Table B.2-15 — Impact requirements for higher thickness

Specified minimum yield strength of base material	Required Impact energy KV (on 10x10 mm specimen) at T _R	max. thickness
MPa	J	mm
Re ≤ 275 MPa	27	200
Re ≤ 355 MPa	40	70 - 200
Re ≤ 460 MPa	60	65 - 200
Re ≤ 500 MPa	60	60 - 200