

SLOVENSKI STANDARD SIST ISO 2173:2011

01-junij-2011

Nadomešča: SIST ISO 2173:1995

Sadni in zelenjavni proizvodi - Določanje topnih snovi - Refraktometrična metoda

Fruit and vegetable products -- Determination of soluble solids -- Refractometric method

iTeh STANDARD PREVIEW

Produits dérivés des fruits et légumes -- Détermination du résidu sec soluble -- Méthode réfractométrique

SIST ISO 2173:2011 Ta slovenski standard/je istoveten 210g/stan ISO/2173:2003(09-4853-81be-20e30b538581/sist-iso-2173-2011

ICS:

67.080.01 Sadje, zelenjava in njuni proizvodi na splošno

Fruits, vegetables and derived products in general

SIST ISO 2173:2011

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 2173:2011</u> https://standards.iteh.ai/catalog/standards/sist/ac5ed2c5-cf09-4853-81be-20e30b538581/sist-iso-2173-2011

INTERNATIONAL STANDARD

ISO 2173

Second edition 2003-12-01

Fruit and vegetable products — Determination of soluble solids — Refractometric method

Produits dérivés des fruits et légumes — Détermination du résidu sec soluble — Méthode réfractométrique

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 2173:2011 https://standards.iteh.ai/catalog/standards/sist/ac5ed2c5-cf09-4853-81be-20e30b538581/sist-iso-2173-2011

Reference number ISO 2173:2003(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 2173:2011</u> https://standards.iteh.ai/catalog/standards/sist/ac5ed2c5-cf09-4853-81be-20e30b538581/sist-iso-2173-2011

© ISO 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 2173 was prepared by Technical Committee ISO/TC 34, *Food products*, Subcommittee SC 3, *Fruit and vegetable products*.

This second edition cancels and replaces the first edition (ISO 2173:1978), which has been technically revised. (standards.iteh.ai)

<u>SIST ISO 2173:2011</u> https://standards.iteh.ai/catalog/standards/sist/ac5ed2c5-cf09-4853-81be-20e30b538581/sist-iso-2173-2011

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 2173:2011</u> https://standards.iteh.ai/catalog/standards/sist/ac5ed2c5-cf09-4853-81be-20e30b538581/sist-iso-2173-2011

Fruit and vegetable products — Determination of soluble solids — Refractometric method

1 Scope

This International Standard specifies a refractometric method for the determination of the soluble solids in fruit and vegetable products.

This method is particularly applicable to thick products, to products containing suspended matter, and to products rich in sugar. If the products contain other dissolved substances, the results will be only approximate; nevertheless, for convenience the result obtained by this method can be considered conventionally as the soluble solids content.

For the determination of the soluble solids in fruit juices (not containing suspended matter) and in NOTE concentrated juices (clarified), the pyknometric method specified in ISO 2172 is applicable.

<u>eh</u> STANDARD PREVIEW Terms and definitions

(standards.iteh.ai)

For the purposes of this document, the following terms and definitions apply.

2.1

2

SIST ISO 2173:2011

soluble solids determined by the refractionetric method

concentration of sucrose in an aqueous solution which has the same refractive index as the product analysed, under specified conditions of preparation and temperature

NOTE This concentration is expressed as a mass fraction in percent.

Principle 3

The refractive index of a test solution is measured at 20 °C \pm 0,5 °C using a refractometer. The refractive index is correlated with the amount of soluble solids (expressed as sucrose concentration) using tables, or by direct reading on the refractometer of the mass fraction of soluble solids.

4 Reagents

Use only reagents of recognized analytical grade.

4.1 Water

The water used shall have been distilled twice in borosilicate glass apparatus, or shall be water of at least equivalent purity.

Apparatus 5

Usual laboratory apparatus and, in particular, the following.

5.1 Refractometer

Use one of the following.

5.1.1 Refractometer indicating the refractive index, by means of a scale graduated in 0,001, in order to allow readings to be estimated to 0,000 2.

This refractometer shall be adjusted so that at 20 $^\circ\text{C}\pm$ 0,5 $^\circ\text{C}$ it registers a refractive index of 1,333 0 for distilled water.

5.1.2 Refractometer indicating the mass fraction of sucrose, by means of scale graduated in 0,10 %.

This refractometer shall be adjusted so that at 20 °C \pm 0,5 °C it registers a mass fraction of soluble solids (sucrose) of zero for distilled water.

5.2 Means for circulating water, to maintain the temperature of the prisms of the refractometer (5.1.1 or 5.1.2) constant to within \pm 0,5 °C, in the neighbourhood of 20 °C, which is the reference temperature (see 8.1).

5.3 Beaker, of capacity 250 ml.

6 Sampling

It is important that the laboratory receive a sample which is truly representative and has not been damaged or changed during transport or storage h STANDARD PREVIEW

(standards.iteh.ai)

7 Procedure

7.1

SIST ISO 2173:2011 Preparation of test solutionards.iteh.ai/catalog/standards/sist/ac5ed2c5-cf09-4853-81be-

20e30b538581/sist-iso-2173-2011

7.1.1 Clear liquid products

Thoroughly mix the laboratory sample and use it directly for the determination.

7.1.2 Semi-thick products (purees, etc.)

Thoroughly mix the laboratory sample. Press a part of the sample through a gauze folded in four, rejecting the first drops of the liquid and reserving the remainder of the liquid for the determination.

7.1.3 Thick products (jams, jellies, etc.)

Weigh into the tared beaker (5.3), to the nearest 0,01 g, a suitable quantity (up to 40 g) of the laboratory sample and add 100 ml to 150 ml of water. Heat the contents of the beaker to boiling and allow to boil gently for 2 min to 3 min, stirring with a glass rod. Cool the contents and mix thoroughly.

After 20 min, weigh to the nearest 0,01 g, then filter through a fluted filter or a Büchner funnel into a dry vessel. Reserve the filtrate for the determination.

7.1.4 Frozen products

After thawing the sample and removing, if necessary, stones, pips and hard seed-cavity walls, mix the product with the liquid formed during the thawing process and proceed as described in 7.1.2 or 7.1.3 as appropriate.

7.1.5 Dried products

Cut a part of the laboratory sample into small pieces. Remove, if necessary, stones, pips and hard seed-cavity walls, and mix carefully. Then weigh into a tared beaker, to the nearest 0,01 g, 10 g to 20 g of the sample. Add 5 to 10 times this mass of water and place on a boiling water bath for 30 min, stirring from time to time with a glass rod. If necessary, prolong the heating time until a homogeneous mixture is obtained. Cool the contents of the beaker and mix well.

After 20 min, weigh to the nearest 0,01 g, then filter into a dry vessel. Reserve the filtrate for the determination.

If the test solution is too dark to be read in the refractometer, dilute the test solution with concentrated sugar solution; never use water for this purpose. Mix weighed amounts of the solution under examination and a solution of pure sugar of about the same strength (see reference [1]).

7.2 Determination

Adjust the water circulation (5.2) in order to operate at the required temperature (between 15 °C and 25 °C) and allow it to flow to bring the prisms of the refractometer (5.1.1 or 5.1.2) to the same temperature, which shall remain constant to within \pm 0,5 °C during the determination.

Bring the test solution (7.1) to the measuring temperature. Put a small quantity of test solution (2 or 3 drops are sufficient) onto the fixed prism of the refractometer (5.1.1 or 5.1.2) and immediately adjust the movable prism. Suitably illuminate the field of view. The use of a sodium vapour lamp allows more precise results to be obtained (especially in the case of coloured and dark products).

Bring the line dividing the light and dark parts of the surface into the field of view to the crossing of the threads. Read the value of the refractive index or the mass fraction of sucrose, according to the instrument used (5.1.1 or 5.1.2). (standards.iteh.ai)

SIST ISO 2173:2011

Expression of results https://standards.iteh.ai/catalog/standards/sist/ac5ed2c5-cf09-4853-81be-20e30b538581/sist-iso-2173-2011

8.1 Corrections

8

8.1.1 If the determination has been carried out at a temperature other than 20 $^{\circ}C \pm 0.5 ^{\circ}C$, the following corrections are required.

a) For the scale indicating the refractive index (5.1.1), apply the formula:

$$n_D^{20} = n_D^t + 0,0013(t-20)$$

where

- n_{D}^{20} is the refractive index at 20 °C;
- n_D^t is the refractive index at the temperature of measurement;
- t is the temperature of measurement, in degrees Celsius.
- b) For the scale indicating the mass fraction of sucrose (5.1.2), correct the result according to Table A.1.

8.1.2 If the determination has been carried out for the products with added salt, correct the refractometer reading, expressed as a concentration of sucrose at 20 °C ± 0,5 °C, for added salt by the following formula (see reference [2]):

 $S = (R - N) \times 1.016$