

SLOVENSKI STANDARD SIST EN ISO 8996:2005

01-januar-2005

Nadomešča: SIST EN 28996:2001

Ergonomija toplotnega okolja – Ugotavljanje presnovne toplote (ISO 8996:2004)

Ergonomics of the thermal environment - Determination of metabolic rate (ISO 8996:2004)

Ergonomie der thermischen Umgebung - Bestimmung des körpereigenen Energieumsatzes (ISO 8996:2004) ANDARD PREVIEW

(standards.iteh.ai)

Ergonomie de l'environnement thermique - Détermination du métabolisme énergétique (ISO 8996:2004) <u>SIST EN ISO 8996:2005</u> https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3-

e0931eb17e82/sist-en-iso-8996-2005

Ta slovenski standard je istoveten z: EN ISO 8996:2004

ICS:

13.180 Ergonomija

Ergonomics

SIST EN ISO 8996:2005

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN ISO 8996:2005</u> https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3e0931eb17e82/sist-en-iso-8996-2005

SIST EN ISO 8996:2005

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 8996

October 2004

ICS 13.180

Supersedes EN 28996:1993

English version

Ergonomics of the thermal environment - Determination of metabolic rate (ISO 8996:2004)

Ergonomie de l'environnement thermique - Détermination du métabolisme énergétique (ISO 8996:2004) Ergonomie der thermischen Umgebung - Bestimmung des körpereigenen Energieumsatzes (ISO 8996:2004)

This European Standard was approved by CEN on 26 August 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

SIST EN ISO 8996:2005 https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3e0931eb17e82/sist-en-iso-8996-2005

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Ref. No. EN ISO 8996:2004: E

EN ISO 8996:2004 (E)

Foreword

This document (EN ISO 8996:2004) has been prepared by Technical Committee ISO/TC 159 "Ergonomics" in collaboration with Technical Committee CEN/TC 122 "Ergonomics", the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2005, and conflicting national standards shall be withdrawn at the latest by April 2005.

This document supersedes EN 28996:1993.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Endorsement notice

The text of ISO 8996:2004 has been approved by CEN as EN ISO 8996:2004 without any modifications.

(standards.iteh.ai)

SIST EN ISO 8996:2005 https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3e0931eb17e82/sist-en-iso-8996-2005

INTERNATIONAL STANDARD

ISO 8996

Second edition 2004-10-01

Ergonomics of the thermal environment — Determination of metabolic rate

Ergonomie de l'environnement thermique — Détermination du métabolisme énergétique

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN ISO 8996:2005</u> https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3e0931eb17e82/sist-en-iso-8996-2005

Reference number ISO 8996:2004(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN ISO 8996:2005</u> https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3e0931eb17e82/sist-en-iso-8996-2005

© ISO 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forew	/ord	. iv
1	Scope	1
2	Normative references	1
3	Principle and accuracy	1
4 4.1 4.2	Level 1, screening Table for the estimation of metabolic rate by occupation Classification of metabolic rate by categories	3 3 3
5 5.1 5.2	Level 2, observation Estimation of metabolic rate by task requirements Metabolic rate for typical activities	3 3 4
5.3 5.4 5.5	Metabolic rate for a work cycle Influence of the length of rest periods and work periods Obtaining values by interpolation	4 5 6
5.6	Requirements for the application of metabolic-rate tables	6
6 6.1 6.2	Level 3, analysis Estimation of metabolic rate using heart rateREVIE Relationship between heart rate and metabolic rate	6 6 7
7 7.1 7.2 7.3	Level 4, expertise	8 8 14 14
Annex	e0931eb17e82/sist-en-iso-8996-2005 د A (informative) Evaluation of the metabolic rate at level 1, screening	15
Annex	B (informative) Evaluation of the metabolic rate at level 2, observation	17
Annex	c C (informative) Evaluation of the metabolic rate at level 3, analysis	20
Annex	c D (informative) Evaluation of the metabolic rate at level 4, expertise — Examples of the calculation of metabolic rate based on measured data	21

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 8996 was prepared by Technical Committee ISO/TC 159, *Ergonomics*, Subcommittee SC 5, *Ergonomics* of the physical environment.

This second edition cancels and replaces the first edition (ISO 8996:1990), which has been technically revised. (standards.iteh.ai)

<u>SIST EN ISO 8996:2005</u> https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3e0931eb17e82/sist-en-iso-8996-2005

Ergonomics of the thermal environment — Determination of metabolic rate

1 Scope

The metabolic rate, as a conversion of chemical into mechanical and thermal energy, measures the energetic cost of muscular load and gives a numerical index of activity. Metabolic rate is an important determinant of the comfort or the strain resulting from exposure to a thermal environment. In particular, in hot climates, the high levels of metabolic heat production associated with muscular work aggravate heat stress, as large amounts of heat need to be dissipated, mostly by sweat evaporation.

This International Standard specifies different methods for the determination of metabolic rate in the context of ergonomics of the climatic working environment. It can also be used for other applications — for example, the assessment of working practices, the energetic cost of specific jobs or sport activities, the total cost of an activity, etc.

The estimations, tables and other data included in this International Standard concern an "average" individual:

- a man 30 years old weighing 70 kg and 1,75 m tall (body surface area 1,8 m²);
- a woman 30 years old weighing 60 kg and 1,70 m tall (body surface area 1,6 m²).

Users should make appropriate corrections when they are dealing with special populations including children, aged persons, people with physical disabilities, etc. -en-iso-8996-2005

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9886, Ergonomics — Evaluation of thermal strain by physiological measurements

ISO 15265, Ergonomics of the thermal environment — Risk assessment strategy for the prevention of stress or discomfort in thermal working conditions

3 Principle and accuracy

The mechanical efficiency of muscular work — called the "useful work", W — is low. In most types of industrial work, it is so small (a few percent) that it is assumed to be nil. This means that the total energy consumption while working is assumed equal to the heat production. For the purposes of this International Standard, the metabolic rate is assumed to be equal to the rate of heat production.

Table 1 lists the different approaches presented in this International Standard for determining the metabolic rate.

These approaches are structured following the philosophy exposed in ISO 15265 regarding the assessment of exposure. Four levels are considered here:

Level 1, screening: Two methods simple and easy to use are presented to quickly characterize the mean workload for a given occupation or for a given activity:

- method 1A is a classification according to occupation;
- method 1B is a classification according to the kind of activity.

Both methods provide only a rough estimate and there is considerable scope for error. This limits their accuracy considerably. At this level, an inspection of the work place is not necessary.

Level 2, observation: Two methods are presented for people with full knowledge of the working conditions but without necessarily a training in ergonomics, to characterize, on average, a working situation at a specific time:

- in method 2A, the metabolic rate is determined by adding to the baseline metabolic rate the metabolic rate for body posture, the metabolic rate for the type of work and the metabolic rate for body motion related to work speed (using group assessment tables);
- in method 2B, the metabolic rate is determined by means of the tabulated values for various activities.

A procedure is described to record the activities with time and compute the time-weighted average metabolic rate, using the data from the two methods above.

The possibility for errors is high. A time and motion study is necessary to determine the metabolic rate in work situations that involve a cycle of different activities. **PREVIEW**

Level 3, analysis: One method is addressed to people trained in occupational health and ergonomics of the thermal environment. The metabolic rate is determined from heart rate recordings over a representative period. This method for the indirect determination of metabolic rate is based on the relationship between oxygen uptake and heart rate under defined conditions. <u>SIST EN ISO 8996:2005</u>

https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3-

Level 4, expertise: Three methods are presented 82 They require very specific measurements made by experts:

- in Method 4A, the oxygen consumption is measured over short periods (10 min to 20 min) (a detailed time and motion study is necessary to show the representativity of the measurement period);
- method 4B is the so-called doubly labelled water method aiming at characterizing the average metabolic rate over much longer periods (1 to 2 weeks);
- method 4C is a direct calorimetry method.

The main factors affecting the accuracy of the estimations are the following:

- individual variability;
- differences in the work equipment;
- differences in work speed;
- differences in work technique and skill;
- gender differences and anthropometric characteristics;
- cultural differences;
- when using the tables, differences between observers and their level of training;

- when using level 3, the accuracy of the relationship between heart rate and oxygen uptake, as other stress factors also influence the heart rate;
- at level 4, the measurement accuracy (determination of gas volume and oxygen fraction).

The accuracy of the results, but also the costs of the study, increase from level 1 to level 4. Measurement at level 4 gives the most accurate values. As far as possible, the most accurate method should be used.

Level	Method	Accuracy	Inspection of the work place
1 Scrooning	1A: Classification according to occupation	Rough information Very great risk of error	Not necessary, but information needed on technical equipment, work organization
Screening	1B: Classification according to activity		
2	2A: Group assessment tables	High error risk	Time and motion study necessary
Observation	2B: Tables for specific activities	Accuracy: ± 20 %	
3	Heart rate measurement under	Medium error risk	Study required to determine a
Analysis	defined conditions	Accuracy: ± 10 %	representative period
	4A: Measurement of oxygen consumption STAND	Errors within the limits of the accuracy of the measurement or of the time and motion study	Time and motion study necessary
4 Expertise	4B: Doubly labelled water method		Inspection of work place not necessary, but leisure activities must be evaluated.
	4C: Direct calorimetry https://standards.iteh.ai/catalog/sta	<u> 各CCUTのCY2由5</u> % hdards/sist/cdc0e101-5a3b-43a4-l	Inspection of work place not necessary

 Table 1 — Levels for the determination of the metabolic rate

e0931eb17e82/sist-en-iso-8996-2005

4 Level 1, screening

4.1 Table for the estimation of metabolic rate by occupation

Table A.1 in Annex A shows the metabolic rate for different occupations. The values are mean values for the whole working time, but without considering longer rest pauses, for example lunchtime. Significant variation may arise due to differences in technology, work elements, work organization, etc.

4.2 Classification of metabolic rate by categories

The metabolic rate can be estimated approximately using the classification given in Annex A. Table A.2 defines five classes of metabolic rate: resting, low, moderate, high, very high. For each class, an average and a range of metabolic rate values are given as well as a number of examples. These activities are supposed to include short rest pauses. The examples given in Table A.2 illustrate the classification.

5 Level 2, observation

5.1 Estimation of metabolic rate by task requirements

Here, the metabolic rate is estimated from the following observations:

— the body segment involved in the work: both hands, one arm, two arms, the entire body;

- the workload for that body segment: light, medium, heavy, as judged subjectively by the observer;
- the body posture: sitting, kneeling, crouching, standing, standing stooped;
- the work speed.

Table B.1 in Annex B gives the mean value and the range of metabolic rates for a standard person, seated, as a function of the body segment involved and the workload. Table B.2 gives the corrections to be added when the posture is different from seated.

5.2 Metabolic rate for typical activities

Table B.3 in Annex B provides values of metabolic rate for typical activities. These values are based on measurements performed in the past in many different laboratories.

5.3 Metabolic rate for a work cycle

To determine the overall metabolic rate for a work cycle, it is necessary to carry out a time and motion study that includes a detailed description of the work. This involves classifying each activity and taking account of factors such as the duration of each activity, the distances walked, the heights climbed, the weights manipulated, the number of actions carried out, etc.

The time-weighted average metabolic rate for a work cycle can be determined from the metabolic rate of the respective activity and the respective duration using the equation: **iTeh STANDARD PREVIEW**

$$M = \frac{1}{T} \sum_{i=1}^{n} M_i t_i$$

(standards.iteh.ai)

(1)

where

SIST EN ISO 8996:2005

https://standards.iteh.ai/catalog/standards/sist/cdc0e101-5a3b-43a4-b6a3-

- *M* is the average metabolic rate for the work cycle, in watts per square metre;
- M_i is the metabolic rate for activity *i*, in watts per square metre;
- t_i is the duration of activity *i*, in minutes;
- *T* is the duration, in minutes, of the work cycle considered, and is equal to the sum of the partial durations t_i .

The recording of occupational activities and the duration of the activities for a working day or for a particular period may be simplified by using the diary described in Table B.4 and Table B.5. Activities are recorded when they are changed, using a classification code derived from the tables for the estimation of metabolic rate by task components. The number of components to be considered will vary depending upon the complexity of the activity.

The procedure is as follows:

- a) Fill in the name and other details of the person under study.
- b) Observe the work of the person under study (at least 2 h to 3 h).
- c) Determine each individual task component and the corresponding metabolic rate estimated from Table B.1, B.2 or B.3.
- d) Always fill in the diary when the task component is changed.
- e) Calculate the total length of time spent on each task component.