INTERNATIONAL STANDARD

First edition 2006-09-15

Geotechnical investigation and testing — Sampling methods and groundwater measurements —

Part 1: Technical principles for execution

iTeh STReconnaissance et essais géotechniqués — Méthodes de prélèvement et mesurages piézométriques — Stratie 1: Principes techniques des travaux

<u>ISO 22475-1:2006</u> https://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1ec5744a00be85/iso-22475-1-2006

Reference number ISO 22475-1:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 22475-1:2006</u> https://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1ec5744a00be85/iso-22475-1-2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forew	ord	vii
Introd	uction	viii
1	Scope	. 1
2	Normative references	. 1
3 3.1 3.2 3.3 3.4	Terms and definitions Site investigation methods Drilling rigs and equipment Sampling Groundwater measurements	. 2 . 3 . 3
4 4.1 4.2 4.3	Drilling rigs and ancillary equipment General Requirements for the drilling rigs and equipment Equipment scope	10 10
5 5.1 5.2 5.3 5.4	General requirements prior to sampling and groundwater measurements General Selection of techniques and methods ARD PREVIEW Requirements for ground investigation sites and points Preliminary information needed before starting sampling and groundwater measurements	11 11 11 12
5.5 5.6	Backfilling and site abandonments: <u>12006</u> . Safety and special requirements abov/standards/sist/4c7f5a43-9814-4d41-aa1e-	
6 6.1 6.2 6.3 6.4 6.5	Soil sampling methods	13 13 14 20
7 7.1 7.2 7.3 7.4 7.5	Rock sampling methods General Categories for rock sampling methods Sampling by drilling Block sampling Integral sampling	29 29 32 33
8 8.1 8.2 8.3	Groundwater sampling methods for geotechnical purposes General Equipment Techniques of groundwater sampling	33 34
9 9.1 9.2 9.3 9.4 9.5	Groundwater measuring stations and piezometers General Piezometers Installation of piezometers Maintenance Decommissioning	35 36 40 43
10 10.1 10.2	Groundwater measurements Calibration Performance of the measurements	44

11	Handling, transport and storage of samples	45
11.1	General	
11.2	Preservation materials and sample containers	46
11.3	Handling of samples	
11.4	Labelling of samples	47
11.5	Transport of samples	
11.6	Preparation of storage and shipping containers	
11.7	Storage of samples	
12	Report	50
12.1	Field report	50
12.2	Report of the results	56
Annex	A (informative) Example of a form for the preliminary information on the intended sampling and groundwater measurements	58
Annex	B (informative) Field reports	60
Annex	C (informative) Drilling and sampling equipment for soil and rock	69
Annex	D (informative) Vacuum bottles for groundwater sampling	. 115
Annex	E (informative) Protective measures of piezometers	. 117
Bibliog	raphy	. 119

Figures

Figure 1 — Definitions of the diameters D_1 , D_2 , D_3 and D_4 Figure 2 — Application of fracture state terms for rock cores.	5
Figure 2 — Application of fracture state terms for rock cores.	6
Figure 3 — Lengths of core run and sample	7
Figure 4 — Examples of open-tube samples (OS) for recovering samples from boreholes	24
c5744a00be85/iso-22475-1-2006 Figure 5 — Schematic thin-walled stationary piston sampler (PS) for sampling from borehole bottom	26
Figure 6 — Examples of open systems	
Figure 7 — Examples of closed systems	38
Figure 8 — Closed system with filter pack and sealing in a borehole	42
Figure 9 — Examples of sealing and securing samples	48
Figure 10 — Example of the configuration of an open groundwater measuring system	55
Figure C.1 — Drill rods and casing	69
Figure C.2 — Drill rods taper threaded "Y" series	72
Figure C.3 — Drill rods taper threaded "J" series	72
Figure C.4 — Corebarrels "metric" series, according to ISO 3552-1	77
Figure C.5 — Corebarrels "W" series, according to ISO 3551-1	79
Figure C.6 — Corebarrels "W" series, according to ISO 3551-1	80
Figure C.7 —Wireline corebarrel assembly	81
Figure C.8 — Geotechnical wireline corebarrel (inner and outer tube assembly)	83
Figure C.9 — Water-well casing with flush butt joints, according to BS 879	85
Figure C.10 — Water-well casing with screwed and socketed joints, according to BS 879	85
Figure C.11 — Three-cone milled tooth rock bit	88

Figure C.12 — Tungsten carbide button bit	88
Figure C.13 — Typical corebarrel lifters	90
Figure C.14 — Typical sampler retainers	91
Figure C.15 — Thin wall sampler (Shelby tube)	92
Figure C.16 — Hydraulic piston sampler	93
Figure C.17 — Stationary piston sampler with a 50-mm diameter liner — Sampling category A	94
Figure C.18 — Stationary piston sampler with a 50-mm liner — Parts	96
Figure C.19 — Stationary piston sampler with a 50-mm diameter liner — Sampling categories A and B	97
Figure C.20 — U100 Sampler	98
Figure C.21 — Standard penetration test (SPT) samplers	99
Figure C.22 — Typical automatic trip hammer	100
Figure C.23 — Window and windowless samplers	101
Figure C.24 — Clay cutter and shell (bailer)	102
Figure C.25 — Sectional shell	103
Figure C.26 — Chisels and stubber	104
Figure C.27 — Continuous flight auger	
Figure C.28 — Augers with diameters between 36 mm and 100 mm 🕂 Sampling category C	106
Figure C.29 — Hollow stem auge <mark>r standards.iteh.ai)</mark> Figure C.30 — Examples of sampling from trial pits	107
Figure C.30 — Examples of sampling from trial pits	108
Figure C.31 — Recovering samples from trial pits 12 Example	109
https://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1e- Figure C.32 — Example for a thin-walled open-tube sampler c5/44000e83/iso-22475-1-2006	110
Figure C.33 — Example for a thick-walled open-tube sampler	
Figure C.34 — Example of sampling from borehole bottom using a large sampler (Sherbrooke block sampler)	112
Figure C.35 — Method of sampling using a Laval sampler	114
Figure D.1 — Equipment for vacuum bottle sampling	116
Figure E.1 — Example of termination of an open piezometer above ground level	117
Figure E.2 — Example of termination of an open piezometer below ground level	118

Tables

Table 1 — Quality classes of soil samples for laboratory testing and sampling categories to be used	14
Table 2 — Sampling by drilling in soils	
Table 3 — Soil sampling using samplers	
Table 4 — Examples on sampling methods with respect to the sampling category in different soils	28
Table 5 — Soil sampling using samplers	31
Table C.1 — Drill rods and casing "W"-series according to ISO 3551-1	70
Table C.2 — Drill rods and casing "metric" series according to ISO 3552-1	71

Table C.3 — Drill rods taper threaded "Y" series72
Table C.4 — Drill rods taper threaded "J" series72
Table C.5 — Corebarrels "W" series, according to ISO 3551-173
Table C.6 — Corebarrels "metric" series, according to ISO 3552-174
Table C.7 — Air flush corebarrels75
Table C.8 — Drill rods and casing76
Table C.9 — Corebarrels "metric" series, according to ISO 3552-178
Table C.10 —Wireline drill rod dimensions
Table C.11 — Wireline corebarrel dimensions
Table C.12 — Geotechnical wireline corebarrel drill pipe dimensions
Table C.13 — Geotechnical wireline corebarrel dimensions
Table C.14 — Dimensions of water-well casings with flush butt joints
Table C.15 — Dimensions of water-well casings with screwed and socketed joints
Table C.16 — Bit selection chart
Table C.17 — Core bit profiles — Diamond set, impregnated, TC and PCD
Table C.18 — Three-cone milled tooth rock bit
Table C.19 — Tungsten carbide button bit

(standards.iteh.ai)

<u>ISO 22475-1:2006</u> https://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1ec5744a00be85/iso-22475-1-2006

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 22475-1 was prepared by the European Committee for Standardization (CEN) Technical Committee CEN/TC 341, *Geotechnical investigation and testing*, in collaboration with Technical Committee ISO/TC 182, *Geotechnics*, Subcommittee SC 1, *Geotechnical investigation and testing*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

(standards.iteh.ai) ISO 22475-1 consists of the following parts, under the general title *Geotechnical investigation and testing* — Sampling methods and groundwater measurements: ISO 22475-1 2006

- Part 1: Technical principles for tex ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1ec5744a00be85/iso-22475-1-2006
- Part 2: Qualification criteria for enterprises and personnel
- Part 3: Conformity assessment of enterprises and personnel by third party

Introduction

ISO 22475-1 specifies the technical principles for the execution of sampling and groundwater measurements for geotechnical purposes.

The quality of these services can be proven by:

- a) a declaration of conformity by a contractor (first party control);
- b) a declaration of conformity by a client (second party control);
- c) a declaration of conformity by a conformity assessment body (third party control).

Every enterprise or individual may decide, if and how they will prove the fulfilment of the technically related criteria: by first, second or third party control because no part of ISO 22475 requires such a declaration.

ISO/TS 22475-2 specifies the qualification criteria for enterprises and personnel that perform sampling and groundwater measurements according to ISO 22475-1.

The conformity assessment by third party control can be made according to the technical principles for execution of sampling and groundwater measurements specified in ISO/TS 22475-1, as indicated in ISO/TS 22475-2, and in the conformity assessment procedure given in ISO/TS 22475-3.

<u>ISO 22475-1:2006</u> https://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1ec5744a00be85/iso-22475-1-2006

Geotechnical investigation and testing — Sampling methods and groundwater measurements —

Part 1: Technical principles for execution

1 Scope

This part of ISO 22475 deals with the technical principles of sampling of soil, rock and groundwater, and with groundwater measurements, in the context of geotechnical investigation and testing, as described in EN 1997-1 and EN 1997-2.

The aims of such ground investigations are:

- a) to recover soil and rock samples of a quality sufficient to assess the general suitability of a site for geotechnical engineering purposes and to determine the required soil and rock characteristics in the laboratory; **iTeh STANDARD PREVIEW**
- b) to obtain information on the sequence, thickness and orientation of strata and joint system and faults;
- c) to establish the type, composition and condition of strata;
- d) to obtain information on groundwater conditions and recover water samples for assessment of the interaction of groundwater, soil, rock and construction material.

The quality of a sample is influenced by the geological and hydrogeological conditions, the choice and execution of the drilling and/or the sampling method, handling, transport and storage of the samples.

This part of ISO 22475 does not cover soil sampling for the purposes of agricultural and environmental soil investigation.

NOTE 1 Soil sampling for these purposes is to be found in ISO 10381.

Water sampling for the purposes of quality control, quality characterisation, and identification of sources of pollution of water, including bottom deposits and sludges is not covered.

NOTE 2 Water sampling for these purposes is to be found in ISO 5667.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 791, Drill rigs — Safety

EN 996, Piling equipment — Safety requirement

EN 1997-1, Eurocode 7: Geotechnical design — Part 1: General rules

EN 1997-2, Eurocode 7: Geotechnical design — Part 2: Design assisted by laboratory testing

ISO 22476-3, Geotechnical investigation and testing — Field testing — Part 3: Standard penetration test

ISO 14688-1, Geotechnical investigation and testing — Identification and classification of soil — Part 1: Identification and description

ISO 14689-1, Geotechnical investigation and testing — Identification and classification of rock — Part 1: Identification and description

ISO 3551-1, Rotary core diamond drilling equipment — System A — Part 1: Metric units

ISO 3552-1, Rotary core diamond drilling equipment — System B — Part 1: Metric units

GUM: Guide to the expression of uncertainty in measurement, BIPM/IEC/IFCC/ISO/OIML/IUPAC/IUPAP

ISO 10097-1, Wireline diamond core drilling equipment — System A — Part 1: Metric units

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 1997-1, EN 1997-2, ISO 14688-1 and ISO 14689-1 and the following apply.

NOTE Additional terms and definitions can be found in the books and literature listed in the Bibliography.

3.1 Site investigation methods

iTeh STANDARD PREVIEW

open excavation constructed to examine the ground conditions in situ, recover samples or carry out field testing

3.1.2 shaft

3.1.1

trial pit

<u>ISO 22475-1:2006</u>

https://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1e-

open vertical or steeply inclined excavation, typically more than 5 m deep, constructed to examine the ground conditions *in situ*, recover samples or carry out field testing

3.1.3

heading

adit

small tunnel driven horizontally or with a slight inclination from a shaft or into sloping ground to examine the ground conditions *in situ*, recover samples and carry out field testing

3.1.4

borehole

hole of any predetermined diameter and length formed in any geological formation or man-made material by drilling

NOTE Investigations carried out in such a hole can be to recover rock, soil or water samples from a specified depth or to carry out *in situ* tests and measurements.

3.1.5

drilling

process by which a borehole is produced in any geological formation by rotary, rotary percussive, percussive or thrust methods and in any predetermined direction in relation to the drill rig

3.1.6

small diameter drilling

drilling in the soil with a diameter greater than 30 mm but less than 80 mm

3.1.7

drilling method

technique employed to create and stabilise the borehole

3.2 Drilling rigs and equipment

3.2.1

drilling tool

device attached to, or forming an integral part of, the drill string, used as a cutting tool for penetrating the geological formation

3.2.2

drill bit

device attached to, or forming an integral part of, the drill string, used as a cutting tool to penetrate the formation being drilled by the drilling method employed

3.2.3

drill rig

device which carries out the drilling function

3.2.4

casing

tubing temporarily or permanently inserted into a borehole

NOTE Casing is used, e.g. to stabilise the borehole, to prevent the loss of flushing medium to the surrounding formation, or to prevent cross flow between different groundwater horizons

3.2.5

flushing medium

(standards.iteh.ai)

liquid or gaseous medium used to move cuttings and/or samples and to lubricate and cool the drilling tool from the borehole https://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1e-

tps://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1ec5744a00be85/iso-22475-1-2006

3.2.6

flushing additive

substance added to the flushing medium in order to affect or change its properties to improve its functioning

3.2.7

core lifter

split, internally slotted or serrated conical spring steel ring, grooves, flexible spring fingers, hinged wedgeshaped fingers or hinged flaps mounted in a carrier ring, to retain the core sample whilst the corebarrel is being hoisted from the borehole

3.2.8

sample retainer

cylindrical retainer fitted with a split-ring core lifter; it is mounted at the lower end of the sampler tube and used to retain the sample in the tube as the sampler is being lifted from the ground

3.3 Sampling

3.3.1

sampling by drilling

continuous sampling

process by which samples are obtained by the drilling tools as the borehole proceeds

NOTE The drilling process is designed to obtain complete samples of the length of the borehole. The drilling tools are used as sampling tools.

3.3.2

sampling by using sampler

process by which samples are obtained by samplers from trial pits, headings, shafts or borehole bottom at selected positions

3.3.3

soil sampling by small diameter drilling

sampling by drilling in soils, using drilling tools with a diameter greater than 30 mm but less than 80 mm

3.3.4

sample

defined amount of rock, soil or groundwater recovered from recorded depth

3.3.5

core, core sample

cylindrical sample of soil or rock obtained from a borehole from recorded depth

3.3.6

block sample

sample of soil or rock cut out by special techniques

3.3.7

cuttings

particles of geological formations formed in the borehole by the cutting action of the drilling tool

3.3.8

suspended matter

iTeh STANDARD PREVIEW

abraded ground material in the flushing medium generated by drilling, in which the individual particle size cannot be recognised with the naked eye

ISO 22475-1:2006

3.3.9 https://standards.iteh.ai/catalog/standards/sist/4c7f5a43-9814-4d41-aa1e-

length of the core drilling between the start and the finish for the removal of the sample

3.3.10

core loss

difference between a core run and the length of the core recovered

3.3.11

area ratio

 C_{a}

ratio of the area of soil displaced by the sampler tube in proportion to the area of the sample

$$C_{a} = \frac{D_{2}^{2} - D_{1}^{2}}{D_{1}^{2}} \cdot 100$$

See Figure 1.

NOTE 1 The area ratio is expressed in per cent.

NOTE 2 One of the factors that determines the mechanical disturbance of the soil.

3.3.12 inside clearance ratio C_{i}

$$C_{i} = \frac{D_{3} - D_{1}}{D_{1}} \cdot 100$$

© ISO 2006 - All rights reserved

See Figure 1.

NOTE 1 The inside clearance ratio is expressed in percent.

NOTE 2 One of the factors that determines the mechanical disturbance of the sample caused by the friction on the inside wall of sample tube or of the liner.

 ${\it D}_2~$ greatest outside diameter of the cutting shoe

- D_3 inside diameter of the sample tube or liner
- D₄ outside diameter of the sample tube
- 1 sample tube
- 2 cutting shoe
- 3 liner (optional)

3.3.13 outside clearance ratio C_0 $C_0 = \frac{D_2 - D_4}{D_4} \cdot 100$

-

See Figure 1.

NOTE The outside clearance ratio is expressed in percent.

3.3.14 Fracture state terms

3.3.14.1

total core recovery in rock

TCR

total length of core sample recovered (solid and non-intact), expressed as a percentage of the length of the core run

See Figure 2.

3.3.14.2 rock quality designation

RQD

sum length of all core pieces with at least one full diameter that are 100 mm or longer between natural fractures, measured along the centre line of the core, expressed as a percentage of the length of the core run

See Figure 2.

3.3.14.3 solid core recovery SCR

length of core recovered as solid cylinders, expressed as a percentage of the length of the core run

See Figure 2.

NOTE A solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference, and is commonly measured along the core axis or other scan line.

NOTE All features shown are natural discontinuities unless stated otherwise.

Key

- 1 drilling-induced fractures
- 2 at least one full diameter
- 3 no single full diameter
- 4 non-intact
- 5 no recovery
- 6 core run

Description of fracture state of rock cores:

- RQD rock quality designation
- SCR solid core recovery
- TCR total core recovery

Figure 2 — Application of fracture state terms for rock cores

3.3.15 sample recovery ratio in soil TC

ratio of the length of the sample, l_q , to the length of the sample run, H

See Figure 3.

3.3.16 net sample recovery ratio IC

ratio of the net length of the sample, l_n , to the length of the sample run, H

See Figure 3

a) Before withdrawal of sampler

Key

- 1 casing
- 2 beginning of coring
- 3 end of coring
- 4 bottom of predrilled borehole
- 5 vent-hole
- 6 sample
- D_3 inside diameter of the sample tube or liner
- length of the sample run Η
- depth, under the natural ground level, of the lower Z_{f} end of the sampler after sampling and before withdrawing the sampler
- depth, under the natural ground level, of the borehole Z_{i} bottom before sampling, and before the beginning of the following core run

- length of the lower part of the sample, which was l_{b} remoulded or lost
- difference between the sample run and the actual length l_e of the sample
- total length of the sample after withdrawal of the l_{g} sampler, measured from the top of the sample to the cutter edge, including the remoulded or lost parts at both ends of the sample
- length of the remoulded or polluted upper part of the $l_{\rm h}$ sample
- net length of the sample, before its conditioning l_n
- effective (useful) length of the sampling tube l_t

Figure 3 — Lengths of core run and sample