International Standard 4SO 31/6

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEЖДУHAPOДНAЯ OPTAHИЗALИЯ ПO CTAHДAPTИЗALИИӨORGANISATION INTERNATIONALE DE NORMALISATION

Quantities and units of light and related electromagnetic radiations

Grandeurs et unités de lumière et de rayonnements électromagnétiques connexes
Second edition - 1980-12-15

15 (standards.iteh.ai)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO $31 / 6$ was develöped by Technical Committee ISO/TC 12, V] WW
Quantities, units, symbols, conversion factors and conversion tables, and was circulated to the member bodies in July 1979. (standards.iteh.ai)

It has been approved by the member bodies of the following countries:

	https.//standards.iteh.ai/catalog/standards/sist/a649570b-dfb5-4392-887d-	
Australia		
Austria	Germany, F.R. 00927	Romania -6-1980
Belgium	India	Portugal
Brazil	Israel	South Africa, Rep. of
Bulgaria	Italy	Spain
Canada	Japan	Sweden
Cuba	Korea, Dem. P. Rep. of	Switzerland
Czechoslovakia	Mexico	United Kingdom
Denmark	Netherlands	USA
Egypt, Arab Rep. of	New Zealand	USSR
Finland	Norway	

No member body expressed disapproval of the document.

This second edition cancels and replaces the first edition (i.e. ISO 31/6-1973).

[^0]Printed in Switzerland

Quantities and units of light and related electromagnetic radiations

ERRATUM

Page 4

Quantity No. 6-4.1, column "Remarks" : Insert a tilde over the first nu so as to read :" \bar{v} is also used for $v / c_{0}{ }^{\prime \prime}$.

Page 5

Delete the broken line between unit No. 6-2.a and unit 6-2.b.
Page 10
Quantity No. 6-29.1, column "Definition", line 7 : Insert "energy" between "radiant" and "flux".
Page 12
iTelh STANDARD PREVIEW
Quantity No. 6-31.1, column "Symbol" : Add (Shefullared s.itelh.ail)
ISO 31-6:1980
https://standards.iteh.ai/catalog/standards/sist/a649570b-dfb5-4392-887d-
b09277557d5b/iso-31-6-1980

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 31-6:1980

https://standards.iteh.ai/catalog/standards/sist/a649570b-dfb5-4392-887d-b09277557d5b/iso-31-6-1980

Quantities and units of light and related electromagnetic radiations

Introduction

This document, containing a table of quantities and units of light and related electromagnetic radiations, is part 6 of ISO 31, which deals with quantities and units in the various fields of science and technology. The complete list of parts of ISO 31 is as follows :

Part 0 : General principles concerning quantities, units and symbols.

Part 1 : Quantities and units of space and time.
Part 2: Quantities and units of periodic and related phenomena.

Arrangement of the tables

The tables of quantities and units in ISO 31 are arranged so that the quantities are presented on left-hand pages and the units on corresponding right-hand pages.

All units between two full lines belong to the quantities between the corresponding full lines on the left-hand pages.

Where the numbering of the items has been changed in the revision of a part of ISO 31, the number in the preceding edition is shown in parentheses on the left-hand page under the new number for the quantity; a dash is used to indicate that the sitern in question did not appear in the preceding edition.

Part 3 : Quantities and units of mechanics. ISO 31-6:1980
https://standards.iteh.ai/catalog/standards/ables of quantities 2 -887d-
Part 4 : Quantities and units of heat. b09277557d5b/iso-31-6-1980
The most important quantities within the field of this document are given together with their symbois and, in most cases, definitions. These definitions are given merely for identification; they are not intended to be complete.

The vectorial character of some quantities is pointed out, especially when this is needed for the definitions, but no attempt is made to be complete or consistent.

In most cases only one symbol for the quantity is given ${ }^{(1)}$; where two or more symbols are given for one quantity and no special distinction is made, they are on an equal footing. When a preferred symbol and a reserve symbol are given, the reserve symbol is in parentheses.

Tables of units

Units for the corresponding quantities are given together with the international symbols and the definitions. For further information, see also ISO 31/0.

[^1]The units are arranged in the following way :

1) The names of the SI units are given in large print (larger than text size). The SI units and their decimal multiples and sub-multiples formed by means of the SI prefixes are particularly recommended. The decimal multiples and submultiples are not explicity mentioned.
2) The names of non-SI units which may be used together with SI units because of their practical importance or because of their use in specialized fields are given in normal print (text size).
3) The names of non-SI units which may be used temporarily together with SI units are given in small print (smaller than text size).

The units in classes 2 and 3 are separated by a broken line from the SI units for the quantities concerned.
4) Non-SI units which should not be used together with SI units are given in annexes in some parts of ISO 31. These annexes are not integral parts of the standards. They are arranged in three groups :
ratios of two lengths and of two areas respectively, and consequently they are treated as dimensionless quantities. Although in this treatment the coherent unit for both quantities is the number 1 , it is convenient to use the special names radian and steradian instead of the number 1 in many practical cases.

If plane angle and solid angle were treated as base quantities, the units radian and steradian would be base units and could not be considered as special names for the number 1 . Such a treatment would require extensive changes in ISO 31.

Number of digits in numerical statements(2)

All numbers in the column "Definition" are exact.

In the column "Conversion factors", the conversion factors on which the calculation of others is based are normally given to seven significant digits. When they are exact and contain seven or fewer digits, and where it is not obvious from the context, the word "exactly" is added, but when they can be terminated after more than seven digits, they may be given in full. When the conversion factors are derived from experiment, they are given with the number of significant digits justified by the accuracy of the experiments. Generally, this means that in such cases the last digit only is in doubt. When, however, experiment justifies more than seven digits, the factor is usually rounded off to seven significant digits.
It is generally preferable not to use the special names and symbols of CGS units together with SI units.
b) Units based on the foot, pound and second and some other units

0027755715
c) Other units

These are given for information, especially regarding the conversion factor. The use of those units marked with \dagger is deprecated.

Remark on supplementary units

The General Conference of Weights and Measures has classified the SI units radian and steradian as "supplementary units", deliberately leaving open the question of whether they are base units or derived units, and consequently the question of whether plane angle and solid angle are to be considered as base quantities or derived quantities. ${ }^{(1)}$

In ISO 31, plane angle and solid angle are treated as derived quantities (see also ISO $31 / 0$). In ISO 31, they are defined as

The other conversion factors are given to not more than six significant digits; when they are exactly known and contain six or fewer digits, and where it is not obvious from the context, the word "exactly" is added.

Numbers in the column "Remarks" are given to a precision appropriate to the particular case.

Special remarks

Quantities

This document contains a selection of quantities pertaining to light, many of which are also useful for the whole range of electromagnetic radiations. For light, mainly photometric quantities are given.

In several cases, the same symbol is used for a pair of corresponding radiant and luminous quantities with the understanding that subscripts e for energetic and v for visible will be added whenever confusion between these quantities might otherwise occur.

[^2](2) The decimal sign is a comma on the line. In documents in the English language, a comma or a dot on the line may be used.

For ionizing radiations, however, see ISO 31/10.

In this document spectral concentrations in terms of wavelength correspond to several quantities. The definition is given explicitly in 6-8.1 and the relation to 6-7.1 is shown in the remarks column. Other spectral concentrations are indicated by equations in the remarks column. The subscript λ is used as part of the symbol to indicate that the quantity has the dimension of a derivative with respect to λ. Spectral concentrations in terms of frequency or wave number are defined and denoted similarly, the subscript λ being replaced by v or σ respectively. Spectral concentrations are also called distribution functions, for example wavelength distribution function, frequency distribution function. The name of a quantity which is a spectral concentration may be shortened by replacing the words
"spectral concentration of" by the adjective "spectral", for example spectral concentration of radiant energy density may be called spectral radiant energy density.

The adjective "spectral" is also used to designate quantities which are functions of wavelength (or frequency or wave number), but which are not spectral concentrations, for example spectral emissivity, see 6-18.2. The functional dependence is usually indicated by including λ (or v or σ) in parentheses as part of the symbol, for example $\varepsilon(\lambda)$.

Units

In photometry, the supplementary unit steradian is used for convenience.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 31-6:1980
https:/standards. iteh.ai/catalogstandards/sist/a649570b-dib5-4392-887d-b09277557d5b/iso-31-6-1980

Quantities

6. Light and related electromagnetic radiations

6-1.1 . . 6-11.1

Item No.	Quantity	Symbol	Definition	Remarks
6-1.1	frequency	f, v	Number of cycles divided by time.	
6-2.1	circular frequency	ω	$\omega=2 \pi v$	
6-3.1	wavelength	λ	Distance in the direction of propagation of a periodic wave between two successive points at which the phase is the same (at the same time).	The wavelength in a medium is equal to the wavelength in vacuo divided by the refractive index of the medium, see 6-33.1.
$\begin{aligned} & 6-4.1 \\ & 6-4.2 \end{aligned}$	wavenumber, repetency circular wavenumber, circular repetency	σ k	$\sigma=1 / \lambda$ $k=2 \pi \sigma$	In molecular spectroscopy v is also used for v / c_{0}.
6-5.1	velocity (speed) of propagation of electromagnetic waves in vacuo		andards.iteh.ai) ISO 31-6:1980	$\begin{aligned} & c=(2,99792458 \pm 0,000000012) \\ & \times 10^{8} \mathrm{~m} / \mathrm{s}^{(1)} \end{aligned}$ Sometimes c is used for the phase velocity in a medium, in which case c_{0} is used for the velocity in vacuo.
6-6.1	radiant energy tit	$\begin{aligned} & Q, W_{1}^{\text {ards.iten. }} \\ & \left(U, Q_{\mathrm{e}}\right) \end{aligned}$	Energy emitted, transferred or received as radiation.	प2-88/d-
6-7.1	radiant energy density	$w,(u)$	Radiant energy in an element of volume, divided by that element.	For non-polarized black body (full) radiation
6-8.1	spectral concentration of radiant energy density (in terms of wavelength), spectral radiant energy density (in terms of wavelength)	w_{λ}	The radiant energy density in an infinitesimal wavelength interval, divided by the range of that interval.	and $w=\frac{4 \sigma}{c} T^{4}$ For $f(\lambda, T)$ and σ, see 6-16.1, 6-17.1 and 6-15.1, respectively $w=\int w_{\lambda} \mathrm{d} \lambda$ See also the introduction, special remarks.
6-9.1	radiant power, radiant energy flux	$P, \Phi,\left(\Phi_{\mathrm{e}}\right)$	Power emitted, transferred or received as radiation.	$\Phi=\int \Phi_{\lambda} \mathrm{d} \lambda$
6-10.1	radiant energy fluence rate	φ, ψ	At a given point in space, the radiant energy flux incident on a small sphere, divided by the crosssectional area of that sphere.	$\varphi=\int \varphi_{\lambda} \mathrm{d} \lambda$ In an isotropic homogeneous radiation field, φ / c is the energy density, and the irradiance of a surface is $\varphi / 4$.
6-11.1	radiant intensity	$I,\left(I_{\mathrm{e}}\right)$	In a given direction from a source, the radiant energy flux leaving the source, or an element of the source, in an element of solid angle containing the given direction, divided by that element of solid angle.	$I=\int I_{\lambda} \mathrm{d} \lambda$

(1) CODATA Bulletin 11 (1973). Recommended for universal use by the 15th CGPM (1975).
6. Light and related electromagnetic radiations

Item No.	Name of unit	International symbol for unit	Definition	Conversion factors	Remarks
6-1.a	hertz	Hz	$1 \mathrm{~Hz}=1 \mathrm{~s}-1$		
6-2.a	reciprocal second, second to the power minus one	s^{-1}			
6-2.b	radian per second	$\mathrm{rad} / \mathrm{s}$			
6-3.a	metre	m			
6-3.b	angstrom	A	$1 \AA=10^{-10} \mathrm{~m}$	$1 \AA=10^{-10} \mathrm{~m}$ (exactiy)	$10 \AA=1 \mathrm{~nm}$
6-4.a	reciprocal metre, metre to the power minus one	m^{-1}			The multiple cm^{-1} is often used.
6-5.a	metre per second		standards.iit ISO 31-6:1980	eh.ai)	
6-6.a	joule	ttys./standards.it		$\begin{aligned} & 649570 \mathrm{~b}-\mathrm{dfb5}-4392-887 \mathrm{~d}- \\ & \text {-1980 } \end{aligned}$	
6-7.a	joule per cubic metre	$\mathrm{J} / \mathrm{m}^{3}$			
6-8.a	joule per metre to the fourth power	$\mathrm{J} / \mathrm{m}^{4}$			
6-9.a	watt	w	$1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$		
6-10.a	watt per square metre	$\mathrm{W} / \mathrm{m}^{2}$			
6-11.a	watt per steradian	W/sr			For steradian, see the introduction.

[^0]: (c) International Organization for Standardization, 1980

[^1]: (1) When two types of sloping letters exist (for example as with $\theta ; \vartheta ; \varphi ; \phi ; g ; g$) only one of these is given; this does not mean that the other is not equally acceptable.

[^2]: (1) However, in October 1980 the International Committee of Weights and Measures decided to interpret the class of supplementary units in the International System as a class of dimensionless derived units for which the General Conference of Weights and Measures leaves open the possibility of using these or not in expressions of derived units of the International System.

