International Standard

 so $31 / 9$
0
 Quantities and units of atomic and nuclear physics

Grandeurs et unites de physique atomique et nucléaire
Second edition - 1980-12-15

iTch STANDARI PREVIIEW (standards.itelh.ai)

ISO 31-9:1980
https://standards.iteh.ai/catalog/standards/sist/d7f012ba-9ecd-42a1-9c3f-
69fefl 7af08c/iso-31-9-1980

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO $31 / 9$ was developed by Technical Committee ISO/TC 12, WINW Quantities, units, symbols, conversion factors and conversion tables, and was circulated to the member bodies in July $1979 . \quad$ (standardis.iteh.ai)

It has been approved by the member bodies of the following countries :

	https://standards.iteh.ai/catalog/standards/sist/d7f012ba-9ecd-42al-9c3f-	
Australia	France	C9feflPortugal-31-9-1980 Austria
Germany, F.R.	Romania	
Belgium	India	South Africa, Rep. of
Brazil	Israel	Spain
Bulgaria	Italy	Sweden
Canada	Japan	Switzerland
Cuba	Mexico	United Kingdom
Czechoslovakia	Netherlands	USA
Denmark	New Zealand	USSR
Egypt, Arab Rep. of	Norway	
Finland	Poland	

No member body expressed disapproval of the document.
This second edition cancels and replaces the first edition (i.e. ISO 31/9-1973).

Quantities and units of atomic and nuclear physics

Introduction

This document, containing a table of quantities and units of atomic and nuclear physics, is part 9 of ISO 31, which deals with quantities and units in the various fields of science and technology. The complete list of parts of ISO 31 is as follows :

Part 0 : General principles concerning quantities, units and symbols.
$\mathrm{iTTel}, \mathrm{ST}$
of spoce and
ume
Part 1 : Quantities and units of space and time.

the numbering of the items has been changed in the revision of a part of ISO 31, the number in the preceding edi-

Part 2: Quantities and units of periodic and related phenomena.

Arrangement of the tables

The tables of quantities and units in ISO 31 are arranged so that the quantities are presented on left-hand pages and the units on corresponding right-hand pages.

All units between two full lines belong to the quantities between the corresponding full lines on the left-hand pages.
tion is shown in parentheses on the left-hand page under the new number for the quantity; a dash is used to indicate that the item in question did not appear in the preceding edition.

ISO 31-9:1980
Part 3 : Quantities and units of mechanics.iteh ai/catalog/standards/sist/d7f012ba-9ecd-42a1-9c3f-
69fefl 7af08c/iso- Tables of quantities
The most important quantities within the field of this document are given together with their symbols and, in most cases, definitions. These definitions are given merely for identification; they are not intended to be complete.

The vectorial character of some quantities is pointed out, especially when this is needed for the definitions, but no attempt is made to be complete or consistent.

In most cases only one symbol for the quantity is given(1); where two or more symbols are given for one quantity and no special distinction is made, they are on an equal footing. When a preferred symbol and a reserve symbol are given, the reserve symbol is in parentheses.

Tables of units

Units for the corresponding quantities are given together with the international symbols and the definitions. For further information, see also ISO 31/0.

[^0]The units are arranged in the following way:

1) The names of the SI units are given in large print (larger than text size). The SI units and their decimal multiples and sub-multiples formed by means of the SI prefixes are particularly recommended. The decimal multiples and submultiples are not explicity mentioned.
2) The names of non-SI units which may be used together with SI units because of their practical importance or because of their use in specialized fields are given in normal print (text size).
3) The names of non-SI units which may be used temporarily together with SI units are given in small print (smaller than text size).

The units in classes 2 and 3 are separated by a broken line from the SI units for the quantities concerned.
4) Non-SI units which should not be used together with SI units are given in annexes in some parts of ISO 31. These annexes are not integral parts of the standards. They are arranged in three groups :

1) Units of the CGS system with special names

It is generally preferable not to use the special names and symbols of CGS units together with SI units.

stand

2) Units based on the foot, pound and second and some other units
3) Other units
https://standards.iteh.ai/catalog/standards/sist/d7f012ba-9ecd-42al-9c3f-
These are given for information, especially regarding the conversion factor. The use of those units marked with \dagger is deprecated.

Remark on supplementary units

The General Conference of Weights and Measures has classified the SI units radian and steradian as "supplementary units", deliberately leaving open the question of whether they are base units or derived units, and consequently the question of whether plane angle and solid angle are to be considered as base quantities or derived quantities. ${ }^{(1)}$

In ISO 31, plane angle and solid angle are treated as derived quantities (see also ISO 31/0). In ISO 31, they are defined as ratios of two lengths and of two areas respectively, and consequently they are treated as dimensionless quantities. Although in this treatment the coherent unit for both quantities is the number 1 , it is convenient to use the special names radian and steradian instead of the number 1 in many practical cases.

69fefl 7af08c Special remarks

If plane angle and solid angle were treated as base quantities, the units radian and steradian would be base units and could not be considered as special names for the number 1. Such a treatment would require extensive changes in ISO 31.

Number of digits in numerical statements ${ }^{(2)}$

All numbers in the column "Definition" are exact.
In the column "Conversion factors", the conversion factors on which the calculation of others is based are normally given to seven significant digits. When they are exact and contain seven or fewer digits, and where it is not obvious from the context, the word "exactly" is added, but when they can be terminated after more than seven digits, they may be given in full. When the conversion factors are derived from experiment, they are given with the number of significant digits justified by the accuracy of the experiments. Generally, this means that in such cases the last digit only is in doubt. When, however, experiment justifies more than seven digits, the factor is usually rounded off to seven significant digits.

The other conversion factors are given to not more than six significant digits; when they are exactly known and contain six or fewer digits, and where it is not obvious from the context, the word "exactly" is added.

Numbersin the column "Remarks" are given to a precision appropriate to the particular case.

ISO 31-9:1980

The fundamental physical constants given in this document are either quoted in or calculated from the consistent values of the fundamental physical constants published in CODATA Bulletin 11, 1973.

For some of the "electrical" quantities, equations founded on three base quantities, in particular equations of the Gaussian system, are given in Annex D, together with the numerical values of certain atomic constants expressed in the units of the Gaussian CGS system. For further details, see the introduction to ISO 31/5.

The names and symbols of the chemical elements are given in annex A .

The names and symbols for nuclides of the radioactive series are given in annex C.

In this standard, annexes A and B are integral parts of the standard. Annexes C, D and E are not integral parts of the standard.

iTeh STANIDARID PREVIIEW
 (standards.iteh.ai)

ISO 31-9:1980
https://standards.iteh.ai/catalog/standards/sist/d7f012ba-9ecd-42a1-9c3f-
69fefl 7af08c/iso-31-9-1980
o

Quantities

9. Atomic and nuclear physics

9-1.1 . . . 9-7.1

Item No.	Quantity	Symbol	Definition	Remarks
9-1.1	proton number, atomic number	Z	Number of protons in an atomic nucleus.	This quantity is dimensionless. A nuclide is a species of atoms with specified numbers of protons and neutrons. Nuclides with the same value of Z are called isotopes. The atomic number in the periodic table is equal to the proton number. See also annex B.
9-2.1	neutron number	N	Number of neutrons in an atomic nucleus.	This quantity is dimensionless. Nuclides with the same value of N are called isotones. $N-Z$ is called the neutron excess number.
9-3.1	nucleon number, mass number	A	Number of nucleons in an atomic nucleus.	This quantity is dimensionless. $A=Z+N$ Nuclides with the same value of A are called isobars. See also annex B.
9-4.1 9-4.2	mass of atom (of a nuclide X), nuclidic mass (unified) atomic mass constant	$\begin{aligned} & m_{\mathrm{a}}, m(\mathrm{X}) \\ & m_{\mathrm{u}} \end{aligned}$	Rest mass of a neutral atom in the ground state. S.ITen.al) ISO 31-9:1980 $1 / 12$ of the rest mass of a neutral atom of the ${ }^{15}$ uclide ${ }^{-12} \mathrm{C}$ in the ground state.	
9-5.1 $9-5.2$ 9-5.3	(rest) mass of electron (rest) mass of proton (rest) mass of neutron	$m_{\text {e }}$ m_{p} m_{n}		For a particle with rest mass m the quantity $m c^{2}$ is called its rest energy. $\begin{aligned} m_{\mathrm{e}}= & (0,9109534 \pm 0,0000047) \\ & \times 10^{-30} \mathrm{~kg} \\ = & (5,4858026 \pm 0,0000021) \\ & \times 10^{-4} \mathrm{u} \\ m_{\mathrm{p}}= & (1,6726485 \pm 0,0000086) \\ & \times 10^{-27 \mathrm{~kg}} \\ = & (1,007276470 \\ & \pm 0,000000011) \mathrm{u} \\ m_{\mathrm{n}}= & (1,6749543 \pm 0,0000086) \\ & \times 10^{-27} \mathrm{~kg} \\ = & (1,008665012 \\ & \pm 0,000000037) \mathrm{u} \end{aligned}$
9-6.1	elementary charge	e	The electric charge of a proton.	The electric charge of an electron is equal to $(-e)$. $\begin{aligned} e= & (1,6021892 \pm 0,0000046) \\ & \times 10^{-19} \mathrm{C} \end{aligned}$
9-7.1	Planck constant	h	The elementary quantum of action.	$\begin{aligned} h= & (6,626176 \pm 0,000036) \\ & \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\ h= & h / 2 \pi \\ = & (1,0545887 \pm 0,0000057) \\ & \times 10^{-34} \mathrm{~J} . \mathrm{s} \end{aligned}$

9. Atomic and nuclear physics

9-4.a . . 9-7.

Item No.	Name of unit	$\begin{array}{\|l\|} \hline \text { International } \\ \text { symbol } \\ \text { for unit } \end{array}$	Definition	Conversion factors	Remarks
		TCh.	TAND ${ }^{\text {PD }}$	PREVIEW	
9-4.a	kilogram	kg	standards.i	eh.ail	
9-4.b	(unified) atomic mass unit	lupsp//standards	it1) (unified) atomic mass unit ds equal to $1 / 12$ of the rest mass of a neutral atom of the nuclide ${ }^{12} \mathrm{C}$ in the ground state.		
9.5.a	kilogram	kg			
9-5.b	(unified) atomic mass unit	u		$\begin{aligned} 1 \mathrm{u}= & 1,6605655 \\ & \times 10-27 \mathrm{~kg} \end{aligned}$	
9-6.a	coulomb	c			
9-7.a	joule second	J.s			

Quantities
9. Atomic and nuclear physics (continued)

9-8.1 . . . 9-16.1

Item No.	Quantity	Symbol	Definition	Remarks
9-8.1	Bohr radius	a_{0}	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{\mathrm{e}} e^{2}$	$\begin{aligned} a_{0}= & (0,52917706 \pm 0,00000044) \\ & \times 10^{-10} \mathrm{~m} \end{aligned}$
9-9.1	Rydberg constant	$R_{C_{\infty}}$	$R_{q}=\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0} h c}$	$R_{q_{\infty}}=\begin{aligned} & (1,097373177 \pm 0,000000083) \\ & \times 10^{7} \mathrm{~m}^{-1} \end{aligned}$ For hydrogen ${ }^{1} \mathrm{H}$ $R_{\mathrm{H}}=R_{\mathrm{e}} /\left(1+m_{\mathrm{e}} / m_{\mathrm{p}}\right)$ The quantity $R \cdot /$ hc is called the Rydberg energy ($R y$).
$\begin{gathered} 9-10.1 \\ (-) \end{gathered}$	Hartree energy	E_{h}	$E_{\mathrm{h}}=e^{2 / 4} \pi \varepsilon_{0} a_{0}=2 R_{\mathrm{p}} \cdot h c$	$E_{\mathrm{h}}=4,35981 \times 10^{-18} \mathrm{~J}$
9-11.1 (9-10.1) 9-11.2 (9-10.2) 9-11.3 (9-10.3)	magnetic moment of particle or nucleus Bohr magneton nuclear magneton	$\begin{array}{ll} \mu & \\ & \\ \\ \mu_{\mathrm{B}} \\ \circ^{\prime} \text { Th S } \\ \mu_{\mathrm{N}} \end{array}$	Expectation value of the component of the electromagnetic moment in the direction of the magnetic field in the quantum state with maximum magnetic quantum number. $\begin{aligned} & \mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}} \\ & \mu_{\mathrm{N}}=e \hbar / 2 m_{\mathrm{p}}=\left(m_{\mathrm{e}} / m_{\mathrm{p}}\right) \mu_{\mathrm{B}} \end{aligned}$	The energy in a magnetic field with magnetic flux density B, in the quantum state with maximum magnetic quantum number, in vacuo, is equal to $-\mu B$. $\begin{aligned} \mu_{\mathrm{B}}= & (9,274078 \pm 0,000036) \\ \mathrm{T}_{\mathrm{N}}= & \times 10^{-24} \mathrm{~A} \cdot \mathrm{~m}^{2} \\ \mu_{\mathrm{N}}= & (5,050824 \pm 0,000020) \\ & \times 10^{-27} \mathrm{~A} \cdot \mathrm{~m}^{2} \end{aligned}$
$\begin{aligned} & 9-12.1 \\ & (9-11.1) \end{aligned}$	gyromagnetic coefficient, (gyromagnetic ratio)	γ ps://standards.ite	$\gamma=\mu / J \hbar$ where J is the angular momentum quantum mumber. ailcatalog/standards/sist/d7f012ba-9ecd 69fefl 7af08c/iso-31-9-1980	The gyromagnetic coefficient of the proton is indicated by γ_{p}. $\begin{aligned} \mathcal{Y}_{\mathrm{p}}= & (2,6751987 \pm 0,0000075) \\ & \times 10^{8} \text { A.m }{ }^{2} / \mathrm{J} . \mathrm{s} . \end{aligned}$
$\begin{gathered} \hline 9-13.1 \\ (9-12.1) \\ 9-13.2 \\ (9-12.2) \end{gathered}$	g -factor of atom or electron g-factor of nucleus or nuclear particle	g g	$\begin{aligned} & \gamma=-g \frac{\mu_{\mathrm{B}}}{\hbar}=-g \frac{e}{2 m_{\mathrm{e}}} \\ & \gamma=g \frac{\mu_{\mathrm{N}}}{\hbar}=g \frac{e}{2 m_{\mathrm{p}}} \end{aligned}$	These quantities are dimensionless. They are also called g -values.
$\begin{aligned} & \hline 9-14.1 \\ & (9-13.1) \\ & \\ & \\ & 9-14.2 \\ & (9-13.2) \end{aligned}$	Larmor angular frequency, Larmor circular frequency nuclear precession angular frequency, nuclear precession circular frequency	ω_{L} ω_{N}	$\begin{aligned} & \omega_{\mathrm{L}}=\frac{e}{2 m_{\mathrm{e}}} B \\ & \omega_{\mathrm{N}}=\gamma B \end{aligned}$ where B is the magnetic flux density.	$v_{\mathrm{L}}=\omega_{\mathrm{L}} / 2 \pi$ is called the Larmor frequency.
$\begin{gathered} 9-15.1 \\ (9-14.1) \end{gathered}$	cyclotron angular frequency, cyclotron circular frequency	ω_{c}	$\omega_{\mathrm{c}}=\frac{q}{m} B$ where $\frac{q}{m}$ is the charge to mass ratio of the particle and B is the magnetic flux density.	$v_{\mathrm{c}}=\omega_{\mathrm{c}} / 2 \pi$ is called the cyclotron frequency.
$\begin{aligned} & \hline 9-16.1 \\ & (9-15.1) \end{aligned}$	nuclear quadrupole moment	Q	Expectation value of the quantity $(1 / e) \int\left(3 z^{2}-r^{2}\right) \varrho(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ in the quantum state with the nuclear spin in the field (z) direction; $\varrho(x, y, z)$ is the nuclear charge density, e is the elementary charge.	The electric nuclear quadropole moment is $e Q$.

9. Atomic and nuclear physics (continued)

9-8.a . . . 9-16.a

O

[^0]: (1) When two types of sloping letters exist (for example as with $\theta ; \vartheta ; \varphi ; \phi ; g ; g$) only one of these is given. This does not mean that the other is not equally acceptable.

