

Designation: D 5784 – 95 (Reapproved 2000)

Standard Guide for Use of Hollow-Stem Augers for Geoenvironmental Exploration and the Installation of Subsurface Water-Quality Monitoring Devices¹

This standard is issued under the fixed designation D 5784; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers how hollow-stem auger-drilling systems may be used for geoenvironmental exploration and installation of subsurface water-quality monitoring devices.

1.2 Hollow-stem auger drilling for geoenvironmental exploration and monitoring device installations often involves safety planning, administration, and documentation. This guide does not purport to specifically address exploration and site safety.

NOTE 1—This guide does not include considerations for geotechnical site that are addressed in a separate Guide.

1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.

2. Referenced Documents

2.1 ASTM Standards:

D 653 Terminology Relating to Soil, Rock, and Contained $\ensuremath{\mathsf{Fluids}}^2$

- D 1452 Practice for Soil Investigation and Sampling by Auger Borings²
- D 1586 Test Method for Penetration Test and Split-Barrel Sampling of Soils²
- D 1587 Test Method for Thin-Walled Tube Sampling of Soils^2
- D 2113 Test Method for Diamond Core Drilling for Site Investigation²
- D 2487 Test Method for Classification of Soils for Engineering Purposes²
- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)²
- D 3550 Practice for Ring-Lined Barrel Sampling of Soils²
- D 4220 Practices for Preserving and Transporting Soil Samples²
- D 4428/D4428M Test Methods for Crosshole Seismic Testing²
- D 4700 Guide for Soil Sampling from the Vadose Zone²
- D 4750 Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well)²
- D 5079 Practices for Preserving and Transporting of Rock Core Samples²
- D 5088 Practice for Decontamination of Field Equipment Used at Non-Radioactive Waste Sites²
- D 5092 Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers²
- D 5099 Test Method for Rubber—Measurement of Processing Properties Using Capillary Rheometry³
- D 5254 Practice for Minimum Set of Data Elements to Identify a Ground-Water Site²

3. Terminology

3.1 Definitions:

3.1.1 Terminology used within this guide is in accordance with Terminology D 653. Definitions of additional terms may be found in Terminology D 653.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *bentonite*—the common name for drilling fluid additives and well-construction products consisting mostly of

¹ This guide is under the jurisdiction of ASTM Committee D18 on Soil and Rock and is the direct responsibility of Subcommittee D18.21 on Ground Water and Vadose Zone Investigations.

Current edition approved Oct. 10, 1995. Published December 1995.

² Annual Book of ASTM Standards, Vol 04.08.

³ Annual Book of ASTM Standards, Vol 09.01.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

naturally occurring montmorillonite. Some bentonite products have chemical additives that may affect water-quality analyses.

3.2.2 *bentonite granules and chips*—irregularly shaped particles of bentonite (free from additives) that have been dried and separated into a specific size range.

3.2.3 *bentonite pellets*—roughly spherical- or disk-shaped units of compressed bentonite powder (some pellet manufacturers coat the bentonite with chemicals that may affect the water-quality analysis).

3.2.4 coefficient of uniformity— C_u (D), the ratio D_{60}/D_{10} , where D_{60} is the particle diameter corresponding to 60 % finer on the cumulative particle-size distribution curve, and D_{10} is the particle diameter corresponding to 10 % finer on the cumulative particle-size distribution curve.

3.2.5 *continuous-sampling devices*—barrel-type samplers that fit within the lead auger of the hollow-auger column. The sampler barrel fills with material as the augers advance.

3.2.6 *drill hole*—a cylindrical hole advanced into the subsurface by mechanical means. Also known as borehole or boring.

3.2.7 *drawworks*—a power-driven winch, or several winches, usually equipped with a clutch and brake system(s) for hoisting or lowering a drilling string.

3.2.8 *filter pack*—also known as a gravel pack or a primary filter pack in the practice of monitoring-well installations. The gravel pack is usually granular material, having specified grain-size characteristics, that is placed between a monitoring device and the borehole wall. The basic purpose of the filter pack or gravel envelope is to act as: (1) a nonclogging filter when the aquifer is not suited to natural development or, (2) act as a formation stabilizer when the aquifer is suitable for natural development.

3.2.8.1 *Discussion*—Under most circumstances a clean, quartz sand or gravel should be used. In some cases a pre-packed screen may be used.

3.2.9 *fluid-injection devices*—usually consist of various auger components or drill-rig attachments that may be used to inject a fluid within a hollow-auger column during drilling.

3.2.10 *grout packer*—an inflatable or expandable annular plug that is attached to a tremie pipe, usually positioned immediately above the discharge end of the pipe.

3.2.11 grout shoe—a drillable plug containing a check valve that is positioned within the lowermost section of a casing column. Grout is injected through the check valve to fill the annular space between the casing and the borehole wall or another casing.

3.2.11.1 *Discussion*—The composition of the drillable plug should be known and documented.

3.2.12 *hoisting line*—or drilling line, is wire rope used on the drawworks to hoist and lower the drill string.

3.2.13 *in situ testing devices*—sensors or probes, used to obtain mechanical or chemical-test data, that are typically pushed, rotated, or driven below the bottom of a borehole following completion of an increment of drilling. However, some in situ testing devices (such as electronic pressure transducers, gas-lift samplers, tensiometers, and and so forth) may require lowering and setting of the device(s) in a preexisting borehole by means of a suspension line or a string of

lowering rods or pipe. Centralizers may be required to correctly position the device(s) in the borehole.

3.2.14 *intermittent-sampling devices*—usually barrel-type samplers that may be rotated, driven, or pushed below the bottom of a borehole with drill rods or with a wireline system to lower, drive, and retrieve the sampler following completion of an increment of drilling. The user is referred to the following ASTM standards relating to suggested sampling methods and procedures: Practice D 1452, Test Method D 1586, Practice D 3550, and Practice D 1587.

3.2.15 *mast*—or derrick, on a drilling rig is used for supporting the crown block, top drive, pulldown chains, hoisting lines, and so forth. It must be constructed to safely carry the expected loads encountered in drilling and completion of wells of the diameter and depth for which the rig manufacturer specifies the equipment.

3.2.16 *Discussion*—To allow for contingencies, it is recommended that the rated capacity of the mast should be at least twice the anticipated weight load or normal pulling load.

3.2.17 *piezometer*—an instrument for measuring pressure head.

3.2.18 subsurface water-quality monitoring device— an instrument placed below ground surface to obtain a sample for analyses of the chemical, biological, or radiological characteristics of subsurface pore water or to make in-situ measurements.

4. Significance and Use

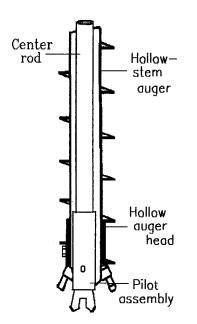
4.1 Hollow-stem auger drilling may be used in support of geoenvironmental exploration (Practice D 3550, Test Method D 4428) and for installation of subsurface water-quality monitoring devices in unconsolidated materials. Hollow-stem auger drilling may be selected over other methods based on the advantages over other methods. These advantages include: the ability to drill without the addition of drilling fluid(s) to the subsurface, and hole stability for sampling purposes (see Test Methods D 1586, D 1587, D 2487, and D 2488) and monitor-well construction in unconsolidated to poorly indurated materials. This drilling method is generally restricted to the drilling of shallow, unconsolidated materials or softer rocks. The hollow-stem drilling method is a favorable method to be used for obtaining cores and samples and for the installation of monitoring devices in many, but not all geologic environments.

NOTE 2—In many geologic environments the hollow-stem auger drilling method can be used for drilling, sampling, and monitoring-device installations without the addition of fluids to the borehole. However, in cases where heaving water-bearing sands or silts are encountered, the addition of water or drilling mud to the hollow-auger column may become necessary to inhibit the piping of these fluid-like materials into the augers. These drilling conditions, if encountered, should be documented.

4.1.1 The application of hollow-stem augers to geoenvironmental exploration may involve ground water and soil sampling, in-situ or pore-fluid testing, or utilization of the hollowauger column as a casing for subsequent drilling activities in unconsolidated or consolidated materials (Test Method D 2113).

NOTE 3—The user may install a monitoring device within the same auger borehole wherein sampling or in-situ or pore-fluid testing was performed.

4.1.2 The hollow-stem auger column may be used as a temporary casing for installation of a subsurface water-quality monitoring device. The monitoring device is usually installed as the hollow-auger column is removed from the borehole.


4.2 The subsurface water-quality monitoring devices that are addressed in this guide consist generally of a screened or porous intake device and riser pipe(s) that are usually installed with a filter pack to enhance the longevity of the intake unit, and with isolation seals and low-permeability backfill to deter the movement of fluids or infiltration of surface water between hydrologic units penetrated by the borehole (see Practice D 5092). Inasmuch as a piezometer is primarily a device used for measuring subsurface hydraulic heads, the conversion of a piezometer to a water-quality monitoring device should be made only after consideration of the overall quality and integrity of the installation, to include the quality of materials that will contact sampled water or gas.

NOTE 4—Both water-quality monitoring devices and piezometers should have adequate casing seals, annular isolation seals, and backfills to deter the movement of fluids between hydrologic units.

5. Apparatus

5.1 Each auger section of the hollow-stem auger-column assembly consists of a cylindrical tube with continuous helical flighting rigidly attached to the outer surface of the tube (see Fig. 1). The hollow-auger section has a coupling at each end for attachment of a hollow-auger head to the bottom end of the lead auger section and for attachment of additional auger sections at the top end to make up the articulated hollow-stem auger column.

NOTE 5—The inside diameter of the hollow-stem auger column is usually selected to provide an opening large enough for insertion of monitoring-device components such as the screened intake and filter pack and installation devices such as a tremie pipe. When media sampling is required, the optimum opening should permit easy insertion and retraction

NOTE 1—Various pilot assemblies not shown here may vary. FIG. 1 Sketch Showing Basic Hollow-Stem Auger Components

of a sampler or core barrel. When a monitoring device is installed, the annular opening should provide easy insertion of a pipe with an inside diameter large enough for placing completion materials adjacent to the riser.

5.1.1 *Hollow-Auger Head*, attached to the lead auger of the hollow-auger column and usually contains replaceable, abrasion-resistant cutters or teeth (see Fig. 1). As the hollow-auger head is rotated, it cuts and directs the cuttings to the auger flights which convey the cuttings to the surface.

5.1.2 Auger-Drive Assembly, attaches to the uppermost hollow-auger section and transfers rotary power and axial force from the drill rig to the auger-column assembly.

5.1.3 *Pilot Assembly*, may consist of: (1) an auger head aperture-plugging device with or without a center cutting head, or (2) a sampling device that is used to sample simultaneously with advancement of the auger column.

5.1.4 Auxiliary Components of a Hollow-Auger Drilling System, consist of various devices such as auger-connector wrenches, auger forks, hoisting hooks, and fluid-injection swivels or adapters.

5.2 *Drill Rig*, used to rotate and advance the auger column. The drill rig should be capable of applying the rated power at a rotary velocity of 50 to 100 r/min. The drill rig should have a feed stroke of at least the effective length of the auger sections plus the effective length of the auger couplings plus about 100 mm (4 in.).

6. Drilling Procedures

6.1 As a prelude to and throughout the drilling process stabilize the drill rig and raise the drill-rig mast. Attach an initial assembly of hollow-auger components (see Fig. 1) to the rotary drive of the drill rig.

Note 6—The drill rig, drilling and sampling tools, the rotary gear or chain case, the spindle, and all components of the rotary drive above the auger column should be cleaned and decontaminated prior to drilling according to Practice D 5088. All lubricated rotary gear or chain cases should be monitored for leaks during drilling. Any lubricants used should be documented. Lubricants with organic or metallic constituents that could be interpreted as contaminants if detected in a soil or water sample should not be used on auger couplings. Any instances of possible contamination should be documented.

6.2 Push the auger-column assembly below the ground surface and initiate rotation at a low velocity.

NOTE 7—If surface contamination is suspected, special drilling procedures may be required to deter transport of contaminated materials downhole. For example, the augers and auger head may be removed and cleaned according to Practice D 5088 following drilling of the initial increments. Complete removal of the augers from a boring may allow caving and cross contamination of materials (especially below the water table). When augers are reinserted, attempts should be made to note if caving or sloughing, or both, has occurred in the borehole and the information documented.

6.3 Then continue drilling, usually at a rotary velocity of about 50 to 100 r/min, and to a depth where intermittent sampling or in situ testing is required, or until the drive assembly is advanced to within about 0.15 to 0.45 m (6 to 18 in.) of the ground surface. Soil sampling is usually accomplished by either of two methods: (1) removing the pilot assembly, if being used, and inserting and driving a sampler