International Standard

Quantities and units of nuclear reactions and ionizing radiations

Grandeurs et unités de réactions nucléaires et rayonnements ionisants

Second edition - 1980-12-15 Corrected and reprinted $-1982-02-01$ STANDARD PREVIEW (standards.iteh.ai)

ISO 31-10:1980
https.//standards.iteh.ai/catalog/standards/sist/87ea7a15-075c-41f6-bf63-3833b4df4467/iso-31-10-1980

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations; governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 31/10 was developed by Technical Committee ISO/TC 12,
Quantities, units, symbols, conversion factors and conversion tables, and was circulated to the member bodies in July 1979.
(standards.iteh.ai)
It has been approved by the member bodies of the following countries :

No member body expressed disapproval of the document.

The second edition cancels and replaces the first edition (i.e. ISO 31/10-1973).
This reprint of the second edition 1980 incorporates the erratum of 1981-12-01 (see 10-19.1 and 10-20.1 in the annex).

[^0]Printed in Switzerland

Quantities and units of nuclear reactions and ionizing radiations

Introduction

This document, containing a table of quantities and units of nuclear reactions and ionizing radiations, is part 10 of ISO 31, which deals with quantities and units in the various fields of science and technology. The complete list of parts of ISO 31 is as follows :

Part 0 : General principles concerning quantities, units and symbols.

Part 1 : Quantities and units of space and time.
Part 2 : Quantities and units of periodic and related phenomena.

Part 3 : Quantities and units of mechanics. (stalladics.iteli.di)

Tables of quantities

Part 4 : Quantities and units of heat.
Part 5 : Quantities and units of electricity and magnetism.

$$
3833 \mathrm{~b} 4 \mathrm{df4} 467 / \text { iso- }
$$

The most important quantities within the field of this document are given together with their symbols and, in most cases, definitions. These definitions are given merely for identification; they are not intended to be complete.

The vectorial character of some quantities is pointed out, especially when this is needed for the definitions, but no attempt is made to be complete or consistent.

In most cases only one symbol for the quantity is given(1); where two or more symbols are given for one quantity and no special distinction is made, they are on an equal footing. When a preferred symbol and a reserve symbol are given, the reserve symbol is in parentheses.

Tables of units

Units for the corresponding quantities are given together with the international symbols and the definitions. For further information, see also ISO 31/0.

[^1]The units are arranged in the following way :

1) The names of the SI units are given in large print (larger than text size). The SI units and their decimal multiples and sub-multiples formed by means of the SI prefixes are particularly recommended. The decimal multiples and submultiples are not explicity mentioned.
2) The names of non-SI units which may be used together with SI units because of their practical importance or because of their use in specialized fields are given in normal print (text size).
3) The names of non-SI units which may be used temporarily together with SI units are given in small print (smaller than text size).

The units in classes 2 and 3 are separated by a broken line from the SI units for the quantities concerned.
4) Non-SI units which should not be used together with SI units are given in annexes in some parts of ISO 31. These annexes are not integral parts of the standards. They are arranged in three groups :

a) Units of the CGS system with special names

quently they are treated as dimensionless quantities. Although in this treatment the coherent unit for both quantities is the number 1 , it is convenient to use the special names radian and steradian instead of the number 1 in many practical cases.

If plane angle and solid angle were treated as base quantities, the units radian and steradian would be base units and could not be considered as special names for the number 1. Such a treatment would require extensive changes in ISO 31.

Number of digits in numerical statements ${ }^{(2)}$

All numbers in the column "Definition" are exact.
In the column "Conversion factors", the conversion factors on which the calculation of others is based are normally given to seven significant digits. When they are exact and contain seven or fewer digits, and where it is not obvious from the context, the word "exactly" is added, but when they can be terminated after more than seven digits, they may be given in full. When the conversion factors are derived from experiment, they are given with the number of significant digits justified by the accuracy of the experiments. Generally, this means that in such cases the last digit only is in doubt. When, however, experiment justifies more than seven digits, the factor is usually rounded off to seven significant digits.
It is generally preferable not to use the special names and
symbols of CGS units together with SI units.
b) Units based on the foot, pound and second and some other units

The other conversion factors are given to not more than six significant digits; when they are exactly known and contain six or fewer digits, and where it is not obvious from the context, the word "exactly" is added.

ISO 31-10:1980

c) Other units https://standards.iteh.ai/catalog/stanc $383364 d$
arding the These are given for information, especially regarding the conversion factor. The use of those units marked with \dagger is deprecated.

Remark on supplementary units

The General Conference of Weights and Measures has classified the SI units radian and steradian as "supplementary units", deliberately leaving open the question of whether they are base units or derived units, and consequently the question of whether plane angle and solid angle are to be considered as base quantities or derived quantities. (1)

In ISO 31, plane angle and solid angle are treated as derived quantities (see also ISO 31/0). In ISO 31, they are defined as ratios of two lengths and of two areas respectively, and conse-

Numbers in the column "'Remarks"- are given to a precision appropriate to the particular case.

Special remarks

In this document the term "particle" includes particles without a rest mass as well as particles having a rest mass.

Distribution functions in terms of energy, velocity, solid angle etc. correspond to several quantities listed in this document. The subscripts E, v and Ω are used as part of the symbol to indicate that the quantity has the dimension of a derivative with respect to E, v and Ω respectively. In general these distribution functions are only mentioned in the remarks column; see for example 10-12.1, 10-29.1, 10-31.1 and 10-32.1.

In the case of cross sections, some of these distribution functions are given special names and are listed as separate items.

[^2][^3]0

iTeh STANIDARID PREVIIEW (standards.iteh.ai)

ISO 31-10:1980
https://standards.iteh.ai/catalog/standards/sist/87ea7a15-075c-41 f6-bf63-3833b4df4467/iso-31-10-1980

Quantities

10. Nuclear reactions and ionizing radiations

10-1.1 . . . 10-6. 1

10. Nuclear reactions and ionizing radiations

10-1.a . . . 10-6.b

Item No.	Name of unit	International symbol for unit	Definition	Conversion factors	Remarks
10-1.a	joule	J			
10-1.b	electronvolt	eV		$\begin{aligned} 1 \mathrm{eV}= & 1,6021892 \\ & \times 10^{-19} \mathrm{~J} \end{aligned}$	See also ISO 31/3. The quantity $10-1.1$ is usually expressed in electronvolts.
10-2.a	joule	J			
10-2.b	electronvolt	eV		$\begin{aligned} 1 \mathrm{eV}= & 1,6021892 \\ & \times 10^{-19} \mathrm{~J} \end{aligned}$	The quantity $10-2.1$ is usually expressed in electronvolts.
10-3.a	square metre	m^{2}			
10-3.b	barn	b iTeh	$\begin{aligned} & 1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2} \\ & \text { TANDARD } \end{aligned}$	$1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2}$ (exactly) PREVIIEW	
10-4.a	square metre per steradian	$\mathrm{m}^{2} / \mathrm{sr}$	Standal dS.it	(eln.ail)	
10-4.b	barn per steradian	$\mathrm{lb} / \mathbf{s r} / / \mathrm{stan}$ aras .	teh ai/catalog/standards/sist 3833b4df4467/iso-31-	$\begin{aligned} & 81 \mathrm{~b} / \mathrm{sr} 1=-10=28 \mathrm{~m}^{2} / \mathrm{st} \mathrm{f} 63- \\ & \text { dexactly) } \end{aligned}$	
10-5.a	square metre per joule	$\mathrm{m}^{2 / J}$			
10-5.b	barn per electronvolt	$\mathrm{b} / \mathrm{e} \mathrm{V}$		$\begin{aligned} 1 \mathrm{~b} / \mathrm{eV}= & 6,24146 \\ & \times 10^{-10} \mathrm{~m}^{2} / \mathrm{J} \end{aligned}$	
10-6.a	square metre per steradian joule	$\mathrm{m}^{2 /}$ (sr.J)			
- $10-\overline{6} . \mathrm{b}$	barn per steradian electronvolt	b/(sr.eV)		$\begin{aligned} & 1 \mathrm{~b} /(\mathrm{sr} \cdot \mathrm{eV}) \\ & =6,24146 \times 10^{-10} \mathrm{~m}^{2} /(\mathrm{sr} \cdot \mathrm{~J}) \end{aligned}$	

Quantities
10. Nuclear reactions and ionizing radiations (continued)

10-7.1 . . . 10-17.1

Item No.	Quantity	Symbol	Definition	Remarks
$\begin{aligned} & 10-7.1 \\ & 10-7.2 \end{aligned}$	macroscopic cross section, cross section density total macroscopic cross section, total cross section density	Σ $\Sigma_{\text {tot }}, \Sigma_{\top}$	The sum of the cross sections for a reaction or process of a specified type over all atoms in a given volume, divided by that volume. The sum of total cross sections for all atoms in a given volume, divided by that volume.	$\Sigma=n_{1} \sigma_{1}+\ldots+n_{i} \sigma_{i}+$ (n_{i} is the number density and σ_{i} is the cross section for atoms of type i). When the target particles of the medium are at rest $\Sigma=1 / l$, where l is the mean free path, see 10-39.1. See remark to 10-13.1.
$\begin{gathered} 10-8.1 \\ (-) \end{gathered}$	particle fluence	Φ	At a given point in space, the number of particles incident on a small sphere in a time interval, divided by the cross-sectional area of that sphere.	Usually the word particle is replaced by the name of a specific particle, for example proton fluence.
$\begin{gathered} 10-9.1 \\ (-1 \end{gathered}$	particle fluence rate, particle flux density	φ iTelh S	$\varphi=\frac{\mathrm{d} \Phi}{\mathrm{~d} t}$ TANDARID PREV	See also 10-31.1, where distribution functions are also included in the "Remarks" column.
$\underset{\substack{10-10.1 \\(-)}}{ }$	energy fluence	Ψ (tps://standards.it	At a given point in space, the sum of the energies, exclusive of rest energy, of all the particles incident on a small sphere in a time interval, divided by the cross sectional area of that sphere.	-41f6-bf63-
$\begin{gathered} 10-11.1 \\ (-) \end{gathered}$	energy fluence rate, energy flux density	ψ	$\psi=\frac{3833 \mathrm{~d} \varphi}{\mathrm{~d} t} 4467 \mathrm{iso}-31-10-1980$	
$\begin{aligned} & 10-12.1 \\ & (10-10.1) \end{aligned}$	current density of particles	$J,(S)$	A vector quantity the integral of whose normal component over any surface is equal to the net number of particles passing through that surface in a small time interval divided by that interval.	S is recommended when there is a possibility of confusion with the symbol J for electric current density. For neutron current density the symbol J is generally used. The distribution functions in terms of speed and energy, J_{v} and J_{E}, are related to J by $J=\int J_{v} \mathrm{~d} v=\int J_{E} \mathrm{~d} E$
$\begin{aligned} & 10-13.1 \\ & (10-11.1) \end{aligned}$	linear attenuation coefficient	μ, μ_{l}	$\mathrm{d} J / \mathrm{d} x=-\mu J$ where J is the current density of a beam of particles parallel to the x-direction.	μ is equal to the total macroscopic cross section $\Sigma_{\text {tot }}$ for removal of particles from the beam.
$\begin{aligned} & 10-14.1 \\ & (10-13.1) \end{aligned}$	mass attenuation coefficient	$\mu / \varrho, \mu_{m}$	The linear attenuation coefficient divided by the mass density of the substance.	
$\underset{(-)}{\substack{10-15.1}}$	molar attenuation coefficient	μ_{c}	$\mu_{c}=\mu / c$ where c is the amount-of-substance concentration.	
$\begin{aligned} & 10-16.1 \\ & (10-12.1) \end{aligned}$	atomic attenuation coefficient	$\mu_{\mathrm{a}}, \mu_{\mathrm{at}}$	$\mu_{\mathrm{a}}=\mu / n$ where n is the number density of atoms in the substance (see also 10-27.1).	μ_{a} is equal to the total cross section $\sigma_{\text {tot }}$ for removal of particles from the beam.
$\begin{aligned} & \hline 10-17.1 \\ & (10-14.1) \end{aligned}$	half-thickness, half value thickness	$d_{1 / 2}$	The thickness of the attenuating layer that reduces the current density of a unidirectional beam to onehalf of its initial value.	For exponential attenuation $d_{1 / 2}=(\ln 2) / \mu$. Other half value thicknesses, such as that for attenuation of absorbed dose rate, are also used.

10. Nuclear reactions and ionizing radiations (continued)

10-7.a . . . 10-17.a

Item No.	Name of unit	International symbol for unit	Definition	Conversion factors	Remarks
10-7.a	reciprocal metre, metre to the power minus one	m^{-1}			
10-8.a	reciprocal square metre, metre to the power minus two	m-2			
10-9.a	reciprocal square metre reciprocal second, metre to the power minus two second to the power minus one	$m-2 \cdot s^{-1}$	TANDARD	PREVIEW	
10-10.a	joule per square metre	$\mathrm{J} / \mathrm{m}^{2}$	$\begin{array}{\|} \text { standards. it } \\ \text { ISO 31-10:1980 } \\ \text { fehaicatalogstandards/sist } \end{array}$	elh.ail) 37ea7a15-075c-41 f6-bf63-	
10-11.a	watt per square metre	W/m²	3833b4df4467/iso-31-1	-1980	
10-12.a	reciprocal square metre reciprocal second, metre to the power minus two second to the power minus one minus one	$\mathrm{m}^{-2 . \mathrm{s}^{-1}}$			
10-13.a	reciprocal metre, metre to the power minus one	m-1			
10-14.a	square metre per kilogram	m²/kg			
10-15.a	square metre per mole	$\mathrm{m}^{2} / \mathrm{mol}$			
10-16.a	square metre	m^{2}			
10-17.a	metre	m			

Quantities
10. Nuclear reactions and ionizing radiation (continued)

10-18.1 . . . 10-28.1

Item No.	Quantity	Symbol	Definition	Remarks
$\begin{array}{\|l\|} \hline 10-18.1 \\ (10-15.1) \end{array}$	total linear stopping power	S, S_{l}	For an ionizing charged particle of energy E moving in the x-direction $S=-\mathrm{d} E / \mathrm{d} x$	Also called stopping power. Both collision losses and radiation losses are included. The ratio of the total linear stopping power of a substance to that of a reference substance is called relative linear stopping power. See also 10-54.1.
$\begin{array}{\|l\|} \hline 10-19.1 \\ (10-16.1) \end{array}$	total atomic stopping power	$S_{\text {a }}$	$S_{\mathrm{a}}=S / n$ where n is the number density of atoms in the substance.	
$\begin{array}{\|l\|} \hline 10-20.1 \\ (10-17.1) \end{array}$	total mass stopping power	$S / \varrho,\left(S_{m}\right)$	The total linear stopping power divided by the mass density of the substance.	The ratio of the total mass stopping power of a substance to that of a reference substance is called relative mass stopping power.
			$\triangle \mathrm{ND} \triangle \mathrm{PD} \mathrm{PRH}^{\text {P }}$	HY
$\begin{array}{\|l\|} \hline 10-21.1 \\ (10-19.1) \end{array}$	mean linear range	R, R_{l}	The distance that a particle penetrates in a given substance under specified conditions averaged over a group of particles having the same energl.	
$\begin{aligned} & \hline 10-22.1 \\ & (10-20.1) \end{aligned}$	mean mass range	$\underline{R_{e} / / s\left(\boldsymbol{R}_{m}\right) \mid \text { ds.ite }}$	The mean linear range multiplied by the mass density of the substance.	-41f6-bf63-
$\begin{array}{\|c} \hline 10-23.1 \\ (10-21.1) \end{array}$	linear ionization by a particle	$N_{\text {il }}$	The number of elementary charges of one sign produced over an element of length of the path of an ionizing charged particle, divided by that element.	Ionization due to secondary ionizing particles etc. is included.
$\begin{array}{l\|} \hline 10-24.1 \\ (10-22.1) \end{array}$	total ionization by a particle	$N_{\text {i }}$	The total number of elementary charges of one sign produced by an ionizing charged particle along its entire path.	This quantity is dimensionless. $N_{\mathrm{i}}=\int N_{\mathrm{i} l} \mathrm{~d} l$ See remark to 10-23.1.
$\begin{aligned} & 10-25.1 \\ & (10-23.1) \end{aligned}$	average energy loss per ion pair formed, (average energy loss per elementary charge of one sign produced)	W_{i}	The initial kinetic energy of an ionizing charged particle, divided by the total ionization by that particle.	The quantity $\quad S_{l} / N_{i l}$, sometimes called average energy per ion pair formed, should not be confused with W_{i}.
$\begin{gathered} 10-26.1 \\ (10-24.1) \end{gathered}$	mobility	μ	The average drift velocity imparted to a charged particle in a medium by an electric field, divided by the field strength.	
$\begin{aligned} & 10-27.1 \\ & (10-25.1) \end{aligned}$	ion number density, ion density	n^{+}, n^{-}	The number of positive or negative ions in a volume element, divided by that element.	n is the general symbol for number density of particles.
$\begin{aligned} & 10-28.1 \\ & (10-26.1) \end{aligned}$	recombination coefficient	α	Coefficient in the law of recombination $-\frac{\mathrm{d} n^{+}}{\mathrm{d} t}=-\frac{\mathrm{d} n^{-}}{\mathrm{d} t}=\alpha n^{+} n^{-}$	

10. Nuclear reactions and ionizing radiations (continued)

10-18.a . . . 10-28.a

Item No.	Name of unit	International symbol for unit	Definition	Conversion factors	Remarks
10-18.a	joule per metre	J / m			
10-18.b	electronvolt per metre	eV / m		$\begin{aligned} 1 \mathrm{eV} / \mathrm{m}= & 1,6021892 \\ & \times 10^{-19} \mathrm{~J} / \mathrm{m} \end{aligned}$	
10-19.a	joule square metre	J.m²			
10-19.b	electronvolt square metre	$\mathrm{eV} \cdot \mathrm{m}^{2}$		$\begin{aligned} 1 \mathrm{eV} \cdot \mathrm{~m}^{2}= & 1,6021892 \\ & \times 10^{-19} \mathrm{~J} \cdot \mathrm{~m}^{2} \end{aligned}$	
10-20.a	joule square metre per kilogram	J.m²/kg			
10-20.b	electronvolt square metre per kilogram	$\mathrm{eV} \cdot \mathrm{m}^{2} / \mathrm{kg}$	TANIDADM.	$\left[\begin{array}{l} 1 \mathrm{eV} \cdot \mathrm{~m}^{2} / \mathrm{kg} \\ =1,6021892 \times 10^{-19} \mathrm{~J} \cdot \mathrm{~m}^{2} / \mathrm{kg} \end{array}\right.$	
10-21.a	metre		standards.it	eh.ai)	
10-22.a	kilogram per square metre	- $\mathrm{kg} / \mathrm{m}^{2}$ andards	teh.ai/catalog/standards/sist 3833 b4df4467/iso-31-1	8.7ea7a15-075c-41f6-bf63- 0-1980	
10-23.a	reciprocal metre, metre to the power minus one	m^{-1}			
10-25.a	joule	J			
10-25.b	electronvolt	eV		$\begin{aligned} 1 \mathrm{eV}= & 1,6021892 \\ & \times 10^{-19} \mathrm{~J} \end{aligned}$	
10-26.a	square metre per volt second	m²/(V.s)	,		
10-27.a	reciprocal cubic metre, metre to the power minus three	$\mathrm{m}^{\mathbf{- 3}}$			
10-28.a	cubic metre per second	$\mathrm{m}^{3 / \mathrm{s}}$			

[^0]: © International Organization for Standardization, 1980

[^1]: (1) When two types of sloping letters exist (for example as with $\theta ; \vartheta ; \varphi ; \phi ; g ; g$) only one of these is given; this does not mean that the other is not equally acceptable.

[^2]: (1) However, in October 1980 the International Committee of Weights and Measures decided to interpret the class of supplementary units in the International System as a class of dimensionless derived units for which the General Conference of Weights and Measures leaves open the possibility of using these or not in expressions of derived units of the International System.

[^3]: (2) The decimal sign is a comma on the line. In documents in the English language, a comma or a dot on the line may be used.

