INTERNATIONAL STANDARD

ISO 734-1

Second edition 2006-11-01

Oilseed meals — Determination of oil content —

Part 1:

Extraction method with hexane (or light petroleum)

iTeh STANDARD PREVIEW

Tourteaux de graines oléagineuses — Détermination de la teneur en (stuile dards.iteh.ai)

Partie 1: Méthode par extraction à l'hexane (ou à l'éther de pétrole)

ISO 734-1:2006

https://standards.iteh.ai/catalog/standards/sist/9e12fda0-3b30-4e4b-8440-4f6ebeed2b64/iso-734-1-2006

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 734-1:2006 https://standards.iteh.ai/catalog/standards/sist/9e12fda0-3b30-4e4b-8440-4f6ebeed2b64/iso-734-1-2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 734-1 was prepared by Technical Committee ISO/TC 34, Food products, Subcommittee SC 2, Oleaginous seeds and fruits and oilseed meals.

This second edition cancels and replaces the first edition (ISO 734-1:1998), Annex A of which has been technically revised. (standards.iteh.ai)

ISO 734 consists of the following parts, under the general title *Oilseed meals* — *Determination of oil content*:

- Part 1: Extraction method with hexage (or light petroleum) da0-3b30-4e4b-8440-
- Part 2: Rapid extraction method

Introduction

A method for the determination of the oil content of oilseeds has been specified in ISO 659. It is therefore necessary to provide for control of oil production by establishing a reference method for the determination of the oil content of oilseed meals in the same way.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 734-1:2006 https://standards.iteh.ai/catalog/standards/sist/9e12fda0-3b30-4e4b-8440-4f6ebeed2b64/iso-734-1-2006

Oilseed meals — Determination of oil content —

Part 1:

Extraction method with hexane (or light petroleum)

1 Scope

This part of ISO 734 specifies a method for the determination of the hexane extract (or light-petroleum extract), called "oil content", of meals (excluding compounded products) obtained by the extraction of oil from oilseeds by pressure or solvents.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies ARD PREVIEW

ISO 771, Oilseed residues — Determination of moisture and volatile matter content (standards.iten.al)

ISO 5502, Oilseed residues — Preparation of test samples

ISO 734-1:2006

https://standards.iteh.ai/catalog/standards/sist/9e12fda0-3b30-4e4b-8440-

3 Terms and definitions 4f6ebeed2b64/iso-734-1-2006

For the purposes of this document, the following terms and definitions apply.

3.1

oil content

all of the substances extracted under the operating conditions specified in this part of ISO 734, and expressed as a mass fraction, in percent, of the product as received

NOTE The oil content may also be expressed relative to dry matter.

4 Principle

A test portion of the product is extracted in a suitable apparatus, with technical hexane or, failing this, light petroleum. The solvent is eliminated and the extract obtained is weighed.

5 Reagents

Use only reagents of recognized analytical grade, unless otherwise specified.

5.1 Technical hexane, *n***-hexane** or **light petroleum**, essentially composed of hydrocarbons with six carbon atoms.

Less than 5 % shall distil below 50 °C and more than 95 % between 50 °C and 70 °C.

For any of these solvents, the residue on complete evaporation shall not exceed 2 mg per 100 ml.

© ISO 2006 – All rights reserved

6 Apparatus

Usual laboratory apparatus and, in particular, the following.

- **6.1 Mechanical grinder**, easy to clean and allowing the meals to be ground, without heating and without appreciable change in moisture, volatile matter and oil content, to obtain particles which pass completely through a sieve of aperture size 1 mm.
- **6.2 Mechanical microgrinder**, of the Dangoumau type¹⁾ capable of producing a fineness of grinding of oilseed meals of less than 160 μ m, with the exception of the "shell" whose particles may reach 400 μ m.

In laboratories where a microgrinder is not available, microgrinding of the ground sample (see 9.4.3) may be replaced by trituration with a pestle and mortar, in the presence of about 10 g of sand that has been washed with hydrochloric acid and then calcined. However, grinding in a mortar cannot be applied in the case of multiple analyses because operator fatigue prevents sufficiently efficient grinding of numerous samples, and the extraction of oil from a coarsely ground sample can never be complete.

- **6.3 Extraction thimble** and **cotton wool**, or **filter paper**, free from matter soluble in hexane or light petroleum.
- **6.4** Suitable extraction apparatus, fitted with a flask of capacity 200 ml to 250 ml.

NOTE Straight-through extractors, for example the Butt, Smalley, Twisselmann and Bolton-Williams²⁾ are suitable. The use of other extractors is conditional upon the results of a test on a standard material of known oil content to confirm the suitability of the apparatus.

iTeh STANDARD PREVIEW

- 6.5 Electric heating bath (e.g. sand bath, water bath) or hot plate. (Standards.iteh.ai)
- **6.6 Electrically heated oven**, with thermostatic control, permitting ventilation or obtaining reduced pressure, capable of being maintained at 103 °C \pm 2| $\frac{6}{12006}$

https://standards.iteh.ai/catalog/standards/sist/9e12fda0-3b30-4e4b-8440-

- **6.7 Desiccator**, containing an efficient desiccant ed2b64/iso-734-1-2006
- **6.8 Pumice stone**, in small particles, previously dried in an oven at 103 $^{\circ}$ C \pm 2 $^{\circ}$ C and cooled in a dessicator.
- **6.9** Analytical balance, capable of weighing to an accuracy of + 0,001 g.

7 Sampling

A representative sample should have been sent to the laboratory. It should not have been damaged or changed during transport or storage.

Sampling is not part of the method specified in this part of ISO 734. A recommended sampling method is given in ISO 5500.

¹⁾ The Dangoumau mechanical microgrinder is an example of suitable apparatus available commercially. This information is given for the convenience or users of this part of ISO 734 and does not constitute an endorsement by ISO of this apparatus.

²⁾ The Butt, Smalley, Twisselmann or Bolton-Williams straight-through extractors are examples of suitable apparatus available commercially. This information is given for the convenience of users of this part of ISO 734 and does not constitute an endorsement by ISO of this apparatus.

8 Preparation of test sample

- **8.1** Prepare the test sample in accordance with ISO 5502.
- **8.2** If necessary, grind the test sample, in the previously well-cleaned mechanical mill (6.1). First, use about one-twentieth of the sample to complete the cleaning of the mill, and reject these grindings. Then grind the rest, collect the grindings, mix carefully and carry out the analysis without delay.

9 Procedure

9.1 Number of determinations

If it is required to check whether the repeatability (11.2) is met, carry out two single determinations in accordance with 9.2 to 9.4.4.

9.2 Test portion

- **9.2.1** Weigh, to the nearest 0,001 g, about 10 g of the test sample (8.2).
- **9.2.2** Transfer this test portion to the extraction thimble (6.3) and close the latter with a wad of cotton wool (6.3). If a filter paper is used, wrap the test portion in it.

9.3 Pre-drying iTeh STANDARD PREVIEW

If the test portion is very moist [moisture and volatile matter content more than 10 % (mass fraction)], leave the filled thimble for some time in an oven, maintained at a temperature not higher than 80 °C, to reduce the moisture and volatile matter content to less than 10 % (mass fraction).

As an alternative to the pre-drying procedure described above, the test portion (9.2.1) may be mixed in a suitable vessel with 2 g to 3 g of analytical quality anhydrous sodium sulfate per 5 g of grindings. Continue as indicated in 9.2.2 and 9.4.

9.4 Determination

9.4.1 Preparation of the flask

Weigh, to the nearest 1 mg, the flask of the extraction apparatus (6.4) containing one or two particles of pumice stone (6.8).

9.4.2 First extraction

Place the thimble (6.3) containing the test portion in the extraction apparatus (6.4). Pour into the flask the necessary quantity of solvent (5.1). Fit the flask to the extraction apparatus on the electric heating bath or hotplate (6.5). Carry out the heating so that the rate of reflux is at least 3 drops per second (boiling moderately, not violently).

After extracting for 4 h, allow to cool. Remove the thimble from the extraction apparatus and place it in a current of air in order to expel the greater part of the residual solvent.

9.4.3 Second extraction

Empty the thimble into the microgrinder (6.2) and grind as finely as possible. Put the mixture back into the thimble and put the latter back into the extraction apparatus. Re-extract for a further 2 h, using the same flask containing the first extract.

© ISO 2006 – All rights reserved

The solution obtained in the extraction flask shall be clear. If it is not, filter it through a filter paper, collecting the filtrate in another previously dried and tared flask, then wash the first flask and filter paper several times with the same solvent.

9.4.4 Elimination of solvent and weighing of the extract

Expel the greater part of the solvent from the flask by distillation on the electric heating bath or the hot plate (6.5). Expel the last traces of solvent by heating the flask for about 20 min in the electrically heated oven (6.6) set at 103 °C.

In the case of meals rich in volatile acids (meals from copra, palm kernel, etc.), drying of the extract should be carried out at atmospheric pressure, and at 80 °C maximum.

Assist the removal of solvent either by blowing air or, preferably, an inert gas (such as nitrogen or carbon dioxide) into the flask for short periods, or by reducing the pressure in the flask.

In the case of drying or semi-drying oilseed meals, it is preferable to remove the residual solvent by drying under reduced pressure.

Allow the flask to cool in the dessicator (6.7), for at least 1 h, to ambient temperature and then weigh to the nearest 1 mg.

Heat again for about 10 min under the same conditions. Allow to cool and reweigh.

The difference between the two weighings shall not exceed 10 mg. If it does, repeat the operations of heating for 10 min, cooling and weighing until the difference between two successive weighings does not exceed 10 mg. Note the final mass of the flask.

(standards.iteh.ai)

10 Expression of results

ISO 734-1:2006

https://standards.iteh.ai/catalog/standards/sist/9e12fda0-3b30-4e4b-8440-

10.1 The oil content, w, expressed as a mass fraction in percent, of the product as received, is equal to

$$w = \frac{m_1}{m_0} \times 100 \%$$

where

 m_0 is the mass, in grams, of the test portion (9.2.1);

 m_1 is the mass, in grams, of the extract after drying (see 9.4.4).

Express the result to one decimal place.

10.2 On request, the oil content may be expressed as a mass fraction, in percent, of the dry matter, w_D . It is then equal to

$$w_{\rm D} = w \times \frac{100}{100 - w_{\rm M}}$$
 %

where

w is the mass fraction, in percent, of oil in the product as received (calculated according to 10.1);

 $w_{\rm M}$ is the mass fraction, in percent, of moisture and volatile matter, determined as specified in ISO 771.

11 Precision

11.1 Interlaboratory test

Details of an interlaboratory test on the precision of the method are summarized in Annex A. The values derived from this interlaboratory test may not be applicable to concentration ranges and matrices other than those given.

11.2 Repeatability

The absolute difference between two independent single test results, obtained using the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will in not more than 5 % of cases be greater than the value of the repeatability limit r given in Table 1.

11.3 Reproducibility

The absolute difference between two single test results, obtained using the same method on identical test material in different laboratories by different operators using different equipment, will in not more than 5 % of cases exceed the value of the reproducibility limit *R* given in Table 1.

Table 1 — Repeatability and reproducibility limits

Sample (sta	Mean value oil content	r % (mass fraction)	R % (mass fraction)
Rapeseed meal	0 to 5	0,3	1,1
Soya and sunflower meals	ISO 734-1:2006 0 to 5 atalog/standards/sist/9e12fda0-3b3	0,2 0-4e4b-8440-	0,7

4f6ebeed2b64/iso-734-1-2006

12 Test report

The test report shall specify:

- a) all information necessary for the complete identification of the sample;
- b) the sampling method used, if know;
- c) the test method used, with reference to this part of ISO 734;
- d) all operating details not specified in this part of ISO 734, or regarded as optional, together with details of any incidents which may have influenced the test result(s);
- e) the test result(s) obtained and the solvent used, indicating clearly whether the result represents the oil content of the product as received or the oil content in relation to the dry matter;
- if the repeatability has been checked, the final quoted result obtained.