INTERNATIONAL STANDARD

Quantities and units -
 Part 12:
 Characteristic numbers
 iTeh STANDARD PREVIEW
 Grandeurs et unités.iteh.ai)
 Partie 12: Nombres caractéristiques

ISO 31-12:1992
https://standards.iteh.ai/catalog/standards/sist/a575a72b-44b2-45ee-9896-
28dc91123804/iso-31-12-1992

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

iTeh STANDARD PREVIEW

International Standard ISO 31-12 was prepared by Technical Committee ISO/TC 12, Quantities, units, symbols, conversíon factors.

This third edition cancels and replaces the 3 seconal2 edition (ISO 31-12:1981). The majoritechnical changes from sthel second edition-44b2-45ee-9896are the following:

28dc91123804/iso-31-12-1992

- the decision by the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM) in 1980 concerning the status of supplementary units has been incorporated;
- the title has been changed.

The scope of Technical Committee ISO/TC 12 is standardization of units and symbols for quantities and units (and mathematical symbols) used within the different fields of science and technology, giving, where necessary, definitions of these quantities and units. Standard conversion factors for converting between the various units also come under the scope of the TC. In fulfilment of this responsibility, ISO/TC 12 has prepared ISO 31.

[^0]ISO 31 consists of the following parts, under the general title Quantities and units:

- Part 0: General principles
- Part 1: Space and time
- Part 2: Periodic and related phenomena
- Part 3: Mechanics
- Part 4: Heat
- Part 5: Electricity and magnetism
- Part 6: Light and related electromagnetic radiations
- Part 7: Acoustics
- Part 8: Physical chemistry and molecular physics
- Part 9: Atomic and nuclear physics
- Part 10: Nuclear reactions and ionizing radiations
- Part 11: Mathematical signs and symbols for use in the physical

- Part 12: Characteristic numbers
(standards.iten.ai)
- Part 13: Solid state physics

ISO 31-12:1992
https://standards.iteh.ai/catalog/standards/sist/a575a72b-44b2-45ee-9896-
28dc91123804/iso-31-12-1992

Introduction

0.1 Tables of quantities

The most important quantities within the field of this document are given together with their symbols and, in most cases, definitions. These definitions are given merely for identification; they are not intended to be complete.

The vectorial character of some quantities is pointed out, especially when this is needed for the definitions, but no attempt is made to be complete or consistent.

In most cases, only one name and only one symbol for the quantity are given; where two or more names or two or more symbols are given for one quantity and no special distinction is made, they are on anpequat VIEW W footing. When two types of italic (sloping) Hetter exist (for example as with $\vartheta, \theta ; \varphi, \phi ; g, g$) only one of these is given. This does not mean that the other is not equally acceptable. In general it is recommended that such variants should not be given different meanings. A symbol within parentheses implies that it is a "reserve symbol", to ibe used: When, in a particular context, the main symbol is in use with ialdifferentimeaning a72b-44b2-45ee-9896-

28dc91123804/iso-31-12-1992

0.2 Remarks

0.2.1 Remark on units for quantities of dimension one

The coherent unit for any quantity of dimension one is the number one (1). When the value of such a quantity is expressed, the unit 1 is generally not written out explicitly. Prefixes shall not be used to form multiples or submultiples of this unit. Instead of prefixes, powers of 10 may be used.

EXAMPLES
Refractive index $n=1,53 \times 1=1,53$
Reynolds number $R e=1,32 \times 10^{3}$
Considering that plane angle is generally expressed as the ratio between two lengths, and solid angle as the ratio between an area and the square of a length, the CIPM specified in 1980 that, in the International System of Units, the radian and steradian are dimensionless derived units. This implies that the quantities plane angle and solid angle are considered as dimensionless derived quantities. The units radian and steradian may be used in expressions for derived units to facilitate distinction between quantities of different nature but having the same dimension.

0.2.2 Special remarks

This part of ISO 31 contains a selection of characteristic numbers used for the description of transport phenomena.

Each recommended symbol for such a characteristic number consists of two letters. When such a symbol appears as a factor in a product, it is recommended that it be separated from the other symbols by a space, by a multiplication sign or by parentheses.

The unit of all of the parameters of dimension one is the number one (1). This unit is not explicitly mentioned in the tables in this part of ISO 31.

iTeh STANDARD PREVIEW
 (standards.iteh.ai)

ISO 31-12:1992
https://standards.iteh.ai/catalog/standards/sist/a575a72b-44b2-45ee-9896-
28dc91123804/iso-31-12-1992

iTelh this page intentionaly left biankE VIIE W
 (standards.iteh.ai)

ISO 31-12:1992
https://standards.iteh.ai/catalog/standards/sist/a575a72b-44b2-45ee-9896-28dc91123804/iso-31-12-1992

Quantities and units -

Part 12:

Characteristic numbers

1 Scope

This part of ISO 31 gives names and symbols for characteristic numbers used in the description of transport phenomena.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 31-12:1992
https://standards.iteh.ai/catalog/standards/sist/a575a72b-44b2-45ee-9896-
28dc91123804/iso-31-12-1992

2 Characteristic numbers: momentum transport

Item No.	Symbol	Name	Definition	Remarks
$12-1$	$R e$	Reynolds number	$R e=\frac{\varrho v l}{\eta}=\frac{v l}{v}$	$E u=\frac{\Delta p}{\varrho v^{2}}$

ISO 31-12:1992
https.//standards.iteh.ai/catalog/standards/sist/a575a72b-44b2-45ee-9896-

Symbols used in the definitions in this clause

Symbol	Name of quantity	Reference No. in ISO 31
l	a characteristic length	$1-3.1$
V	a characteristic speed	$1-10$
ΔT	a characteristic temperature difference	$4-1$
Δp	pressure difference	$3-15.1$
ϱ	volumic mass	$3-2$
η	dynamic viscosity	$3-23$
v	kinematic viscosity: η / ϱ	$3-24$
σ	surface tension	$3-25$
g	acceleration of free fall	$1-11.2$
α	cubic expansion coefficient: $(1 / V) \mathrm{d} V / \mathrm{d} T$	$4-3.2$
λ	mean free path	$8-38$
f	a characteristic frequency	$2-3.1$
c	speed of sound	$7-14.1$

3 Characteristic numbers: transport of heat

Item No.	Symbol	Name	Definition	Remarks
$12-9$	$F o$	Fourier number	$F o=\frac{\lambda t}{c_{p} l^{2}}=\frac{a t}{l^{2}}$	$P e=\frac{\rho c_{p} v l}{\lambda}=\frac{v l}{a}$

ISO 31-12:1992
Symbols used in the definitions in this clause og/standards/sist/a575a72b-44b2-45ee-9896-

Symbol	Name of quantity	Reference No. in ISO 31
l	a characteristic length	$1-3.1$
v	a characteristic speed	$1-10$
t	a characteristic time interval	$1-7$
ΔT	a characteristic temperature difference	$4-1$
g	acceleration of free fall	$1-11.2$
ϱ	volumic mass	$3-2$
η	dynamic viscosity	$3-23$
v	kinematic viscosity: η / ϱ	$3-24$
c_{p}	massic heat capacity at constant pressure	$4-16.2$
α	cubic expansion coefficient: $(1 / V) \mathrm{d} V / \mathrm{d} T$	$4-3.2$
λ	thermal conductivity	$4-9$
a	thermal diffusivity: $\lambda / \varrho c_{p}$	$4-14$
K	coefficient of heat transfer:	$4-10.1$
	heat/(time \times cross-sectional area \times	
	temperature difference)	

[^0]: - ISO 1992

 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

 International Organization for Standardization
 Case Postale $56 \cdot \mathrm{CH}-1211$ Geneve $20 \cdot$ Switzerland
 Printed in Switzerland

