INTERNATIONAL STANDARD

Second edition 2005-09-15

Road vehicles — Brake lining assemblies — Inertia dynamometer test method

Véhicules routiers — Ensembles de garnitures de frein — Méthode d'essai sur banc dynamométrique à inertie

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 11157:2005 https://standards.iteh.ai/catalog/standards/sist/206f92c0-ac18-45cf-be0cf76cb529cc80/iso-11157-2005

Reference number ISO 11157:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11157:2005</u> https://standards.iteh.ai/catalog/standards/sist/206f92c0-ac18-45cf-be0cf76cb529cc80/iso-11157-2005

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forewo	ord	iv
1	Scope	. 1
2	Normative references	. 1
3 3.1 3.2	Terms, definitions and symbols Terms and definitions Symbols	. 1
4	General	. 3
5	Test equipment	. 3
6	Test conditions	. 4
7 7.1 7.2 7.3 7.4 7.5	Test method General Type-0 test (cold performance test) Type-I test (fade test) Type-II test (downhill behaviour test) Type-III test (fade test)	4 4 5 6
8 8.1 8.2 8.3 8.4	Assessment of test data and presentation of results Legal requirements and evaluation of test results	. 8 . 8 . 8 . 9
9	Inspection of brake linings of pade cc80/iso-11157-2005	10
Annex	A (informative) Alternative equations for the calculation of the MFDD	16
Annex	B (informative) Accuracy considerations	18

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 11157 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 2, *Braking systems and equipment*.

This second edition cancels and replaces the first edition (ISO 11157:1999), which has been technically revised. (standards.iteh.ai)

ISO 11157:2005 https://standards.iteh.ai/catalog/standards/sist/206f92c0-ac18-45cf-be0cf76cb529cc80/iso-11157-2005

Road vehicles — Brake lining assemblies — Inertia dynamometer test method

1 Scope

This International Standard specifies a dynamometer test method to homologate alternative types of brake linings (including pads) mounted on original equipment, in accordance with UN-ECE Regulation No. 13-09, Annex 15.

This International Standard is applicable to road vehicles of categories M, N and O (see 3.1) as defined in UN ECE *Consolidated resolution of the construction of vehicles*, R.E.3, Annex 7.

Application for approval corresponding to this test method is to be made by the vehicle manufacturer (in the case of vehicles of category O the application is to be made by the axle or brake manufacturer) or by his duly accredited representative.

The values in square brackets, i.e. [], are taken from UN-ECE Regulation No. 13-09.

iTeh STANDARD PREVIEW

2 Normative references (standards.iteh.ai)

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies For undated references, the latest edition of the referenced document (including any amendments) applies and additional standards/sist/206/92c0-ac18-45cf-be0c-

ISO 611:2003, Road vehicles — Braking of automotive vehicles and their trailers — Vocabulary

ISO 1176:1990, Road vehicles — Masses — Vocabulary and codes

ISO 3833:1977, Road vehicles — Types — Terms and definitions

UN-ECE Regulation No. 13, Uniform provisions concerning the approval of vehicles of categories M, N and O with regard to braking, incorporating the 09 series of amendments.

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the terms, definitions and symbols given in ISO 611, ISO 1176, ISO 3833 and the following apply.

3.1.1

category M

power-driven vehicles having at least four wheels and used for the carriage of passengers

3.1.2

category N

power-driven vehicles having at least four wheels and used for the carriage of goods

3.1.3

category O trailers (including semi-trailers)

3.2 Symbols

Symbol	Unit	Description
d_i, d_j	m/s ²	mean deceleration within the time window <i>i</i> resp. <i>j</i>
d _m	m/s ²	mean fully developed deceleration (MFDD)
d(t), d(T)	m/s ²	deceleration in dependence of time t resp. T
f _d	_	required accuracy of the MFDD
fs	—	required accuracy for the measurement of the stopping distance
f_{V}	—	required accuracy for the measurement of the prescribed speed
Ι	kg/m ²	rotational inertia
i, j	_	index characterizing all events which can be consecutively allocated to a time window with a given duration $t_{\rm d}$
т	kg	mass acting on the ground for the wheel(s) under consideration
n _i	_	number of pulses within the time window <i>i</i>
r	m	dynamic tyre rolling radius
S_{d}	m	stopping distance travelled between $v_{\rm b}$ and $v_{\rm e}$
Si	m	distance travelled within the time window) PREVIEW
$S_{\sf pb}$	m	stopping distance travelled between reand the ai
$S_{\sf pe}$	m	stopping distance travelled between v_p and v_e
<i>t</i> , <i>T</i>	S	time used as a variable in different functions.
t _b	S	time at the beginning of the evaluation range for a braking action
t _d	S	time window in which values of interest are measured
^t e	S	time at the end of the evaluation range for a braking action
T_i	N∙m	mean torque within the time window <i>i</i>
t _S	S	time at the end of a braking action
^v air	km/h	velocity of the cooling air
v_{b}	km/h	vehicle speed at 0,8 v_{p}
^v e	km/h	vehicle speed at 0,1 v_{p}
v _i	km/h	mean speed within the time window <i>i</i>
^v max	km/h	max. vehicle speed
ν _p	km/h	prescribed vehicle speed
vt	km/h	vehicle test speed at initiation of braking
v ₁	km/h	initial speed at beginning of braking for heating procedures with repeated braking
w _S	—	necessary pulse-rate of one revolution for the measurement of the stopping distance
w _v	—	necessary pulse-rate of one revolution for the measurement of the speed
^w d	—	necessary pulse-rate of one revolution for the measurement of the deceleration

4 General

4.1 The test method described can be applied in the event of a modification of vehicle type resulting from the fitting of alternative types of brake linings on the original equipment of vehicles which have been approved in accordance with UN-ECE Regulation No. 13-09.

4.2 The alternative types of brake linings shall be checked by comparing their performance with that obtained from the brake linings with which the vehicle was equipped at the time of approval and conforming to the components identified in the relevant information document, a model of which is given in UN-ECE Regulation No. 13-09, Annex 2.

4.3 The technical service which is responsible for conducting approval tests may, at its discretion, require that comparison of the performance of the brake linings be carried out in accordance with UN-ECE Regulation No. 13-09, Annex 4.

4.4 Application for approval by comparison shall be made by the vehicle manufacturer (in the case of category O vehicles the application shall be made by the axle or brake manufacturer) or by the manufacturer's duly accredited representative.

4.5 For the purposes of this International Standard, the term "vehicle" means the vehicle type which has been approved according to UN-ECE Regulation No. 13-09, and for which the comparison is required to lead to satisfactory results.

4.6 The vehicle (or axle/brake) manufacturer shall ensure that all requirements of UN-ECE Regulation No. 13-09 for the vehicle (or axle/brake) fitted with the alternative types of linings are fulfilled.

5 Test equipment

(standards.iteh.ai)

5.1 An inertia dynamometer having the characteristics specified in 5.2 to 5.5 shall be used for the test. https://standards.iteh.ai/catalog/standards/sist/206f92c0-ac18-45cf-be0c-

5.2 The dynamometer shall be capable of generating the inertia specified in 6.1 and have the capacity to meet the requirements specified in 1.5, 1.6 and 1.7 of UN-ECE Regulation No. 13-09, Annex 4, with respect to Type-I, Type-II and Type-III tests.

5.3 The brake fitted shall be identical with that of the original vehicle type. Inconsequential changes to the lining configuration are permitted e.g. chamfers, slots, wear indicators, anti-noise devices).

- **5.4** Air cooling, if provided, shall be in accordance with 6.4.
- **5.5** The instrumentation for the test shall be capable of providing at least the following data:
- a) continuous recording of disc or drum rotational speed;
- b) number of revolutions completed during a stop, with a tolerance as described in Annex B;
- c) stopping time;
- d) continuous recording of the temperature measured at the centre of the path followed by the lining or at mid-thickness of the disc or drum or lining;
- e) continuous recording of control line pressure or force during brake application;
- f) continuous recording of brake output torque.

6 Test conditions

6.1 The inertia dynamometer shall be set as close as possible, with a tolerance of \pm [5] %, to the rotary inertia which corresponds to that part of the total inertia of the vehicle braked by the wheel(s) under consideration, according to the following formula:

$$I = m r^2 \tag{1}$$

where m is that part of the maximum mass of the vehicle braked by the wheel(s) under consideration. This mass shall be calculated from the design braking force distribution for vehicles of categories M and N when deceleration corresponds to the appropriate value given in 2.1 of UN-ECE Regulation No. 13-09, Annex 4. For category O vehicles the value of m is that of the mass acting on the ground for the wheel(s) under consideration, when the vehicle is stationary and loaded to its maximum mass as given in 3.1 of UN-ECE Regulation No. 13-09, Annex 4.

6.2 The initial rotational speed of the inertia dynamometer shall correspond to the vehicle speed as specified in UN-ECE Regulation No. 13-09 Annex 4, and shall be based on the dynamic rolling radius of the tyre.

6.3 Brake linings shall be at least 80 % bedded and shall not have exceeded a temperature of 180 °C during bedding, or alternatively, at the vehicle manufacturer's request, be bedded in accordance with his recommendations.

6.4 Cooling air may be used, directed perpendicularly to the axis of rotation of the wheel. The velocity of the cooling air flowing over the brake shall be **TANDARD PREVIEW**

$$v_{air} = 0.33 v_t$$

(standards.iteh.ai)

(2)

where: v_t = vehicle test speed at initiation of braking.

<u>ISO 11157:2005</u>

The cooling air shall be at ambient temperature catalog/standards/sist/206f92c0-ac18-45cf-be0c-

f76cb529cc80/iso-11157-2005

6.5 The same dynamometer and equipment shall be used to conduct the tests described in Clause 7.

7 Test method

7.1 General

7.1.1 Five (or less as agreed with the technical service, but at least three) sample sets of the alternative types of brake linings shall be subjected to the comparison test; they shall be compared with the same number of sample sets of the original equipment brake linings conforming to the original components identified in the information document for the first approval of the vehicle.

For category O vehicles, the information document concerning the appropriate axle or brake type approval test shall be used as the basis.

7.1.2 Brake lining equivalence shall be based on comparison of the results achieved using the test methods in this International Standard and in accordance with the requirements of 7.2 to 7.5.

7.2 Type-0 test (cold performance test)

7.2.1 The brake applications shall be made when the initial temperature is between 50 $^{\circ}$ C and [100] $^{\circ}$ C measured in accordance with 5.5 d).

7.2.2 Brake applications shall be made from an initial rotational speed equivalent to the specified test speed of the vehicle [see Tables 1 a) and 1 b)]. This test shall consist of at least five stops from the specified speed

and use reasonably spaced increments of input to generate a graph of "braking performance" (measured as mean fully developed deceleration, or MFDD) versus "input" (force, line pressure, etc.) for each sample. One measurement shall be at least equal to the specified braking performance [see Tables 1 a) and 1 b)] which will be used as the "Type-0 test reference value".

Table 1 — Legal requirements

Vehicle category	Specified test speed	MFDD
	km/h	m/s²
M1	80	5,8
M2	60	5,0
M3	60	5,0
N1	80	5,0
N2	60	5,0
N3	60	5,0

a) for vehicle categories M and N

iTeh STAb) for vehicle category VIEW

Vehicle type (St	an Specified test e	Specified braking Performance				
Venicie type (Se	speed	Braking rate	MFDD			
	<u>ISO km/b7:2005</u>		m/s²			
o (semi-trailer)	i/catalog/standards/sist/206 60/40 a 76cb529cc80/iso-11157-2	192c0-ac18-45cf-b 0,45	e0c- 4,4			
O (full trailer)	60/40 ^a	0,50	4,9			
O (centre axle trailer)	60/40 ^a	0,50	4,9			
a 40 km/h for cold performance test as comparison for Type-I test.						

7.2.3 The MFDD assessed during the cold performance test on the alternative types of brake linings being tested for the purposes of comparison shall be, for the same input, within the test limits \pm [15] % of the MFDD assessed with the original equipment brake linings (see 8.2 and Figure 1).

7.3 Type-I test (fade test)

7.3.1 With repeated braking

The correct input shall generate a deceleration within [3] m/s^2 to 3,3 m/s^2 on the first snub of the heating procedure and shall be taken from the graph of "braking performance" versus "input" generated in 7.2.2 (see Figure 2).

7.3.2 Heating procedure with repeated braking (categories M and N)

7.3.2.1 The brake shall be heated by carrying out the following procedure.

7.3.2.2 The brake shall be cold, i.e. the initial temperature shall be between 50 °C and [100] °C (at the beginning of the first snub only) measured in accordance with 5.5 d).

7.3.2.3 The initial rotational speed at the beginning of braking should be v_1 , where $v_1 = [80] \% v_{max}$, but without exceeding:

[120] km/h for categories M1 and N1;

[100] km/h for category M2;

— [60] km/h for other categories M and N.

7.3.2.4 The input shall be constant and shall generate a deceleration within [3] m/s² to 3,3 m/s². It should remain constant for subsequent snubs (although possibly generating different deceleration levels).

7.3.2.5 Release the brake when the speed reaches $[0,5] v_1$.

7.3.2.6 Immediately after releasing the brake the speed, v_1 , shall be regained in the shortest possible time, allowing at least [10] s to stabilize this speed before initiating the next braking cycle.

7.3.2.7 The next braking cycle shall be initiated [45] s (category M1), [55] s (category N1, M2) or [60] s (other categories) after initiating the previous braking cycle.

7.3.2.8 Execute a total of [15] braking cycles (categories M1, N1, M2) or [20] braking cycles (categories M3, N2, N3).

7.3.3 Heating procedure with continuous braking (categories O2 and O3)

7.3.3.1 The brake shall be cold, i.e. the initial temperature shall be between 50 °C and [100] °C (at the beginning of the heating procedure) measured in accordance with 5.5 d).

7.3.3.2 The rotational speed shall be equivalent to [40] km/h and kept constant for a period of [153] s (i.e. time elapsed travelling a distance of [1,700] m) with a constant braking torque equivalent to the torque required to keep the vehicle speed constant on 2a 6.% gradient ((i.e. [7] % gradient minus [1] % rolling resistance).

7.3.4 Braking efficiency test with hot brakes (hot braking performance for categories M, N and O)

7.3.4.1 This hot performance test shall be carried out under the same conditions as for the Type-0 test.

7.3.4.2 Immediately after completing the heating procedure, regain the prescribed test speed in the Type-0 test [see Tables 1 a) and 1 b)] in the shortest time possible.

7.3.4.3 Within [60] s after completing the heating procedure, execute one stop with an input corresponding to the specified braking performance [see Tables 1 a) and 1 b)].

7.3.4.4 The average of the MFDDs evaluated during the hot performance test of the alternative types of brake linings tested for the purpose of comparison shall be, for the same input, within \pm [15] % of the average of the MFDDs evaluated with the original equipment brake linings (see 8.3).

7.4 Type-II test (downhill behaviour test)

7.4.1 General

7.4.1.1 This test is required only if, on the vehicle type in question, the friction brakes are used for the Type-II test.

7.4.1.2 Brake linings for vehicles of category M3 (except those vehicles required to undergo a Type-IIA test) and category N3 shall be tested according to the method given in 7.4.2 to 7.4.3.4.

7.4.2 Heating procedure for vehicles of categories M3 and N3

The input into the brake shall be equal to that which was used for the basic vehicle test and shall be taken from the homologation test. The corresponding braking torque shall be applied at a constant rotational speed equivalent to a vehicle speed of [30] km/h for a period of [12] min (i.e. time elapsed travelling a distance of [6] km).

7.4.3 Braking efficiency test with hot brakes (hot braking performance for categories M3 and N3)

7.4.3.1 This hot performance test shall be carried out under the same conditions as for the Type-0 test.

7.4.3.2 Immediately after completing the heating procedure, regain the prescribed test speed in the Type-0 test [see Table 1 a)] in the shortest possible time.

7.4.3.3 Within [60] s after completing the heating procedure, execute one stop with an input corresponding to the specified braking performance [see Table 1 a)].

7.4.3.4 The average of the MFDD assessed during the hot performance test of the alternative types of brake linings tested for the purpose of comparison shall be, for the same input, within \pm [15] % of the average of the MFDD assessed with the original equipment brake linings (see 8.3).

7.5 Type-III test (fade test)

7.5.1 General

iTeh STANDARD PREVIEW

This test is applicable for brake linings/pads for towed vehicles of category O4

standards.iteh.ai)

7.5.2 Test with repeated braking

<u>ISO 11157:2005</u>

The correct input shall generate a deceleration within [3] m/s^2 to 3,3 m/s^2 on the first snub of the heating procedure and shall be taken from the graph of s braking performance versus "input" generated in 7.2.2 (see Figure 2).

7.5.3 Heating procedure with repeated braking (category O4)

7.5.3.1 The brake shall be heated by carrying out the following procedure.

7.5.3.2 The brake shall be cold, i.e. the initial temperature shall be between 50 °C and [100] °C (at the beginning of the first snub only) measured in accordance with 5.5 d).

7.5.3.3 The initial rotational speed at the beginning of braking shall be $v_1 = [60]$ km/h.

7.5.3.4 The input shall be constant and shall generate a deceleration within [3] m/s² to 3,3 m/s². It should remain constant for subsequent snubs (although possibly generating different deceleration levels).

7.5.3.5 Release the brake when the speed reaches $[0,5] v_1$.

7.5.3.6 Immediately after releasing the brake, the speed v_1 shall be regained in the shortest possible time, allowing at least [10] s to stabilize this speed before initiating the next braking cycle.

7.5.3.7 The next braking cycle shall be initiated [60] s after initiating the previous braking cycle.

7.5.3.8 Execute a total of [20] braking cycles.

7.5.4 Braking efficiency test with hot brakes (hot braking performance)

7.5.4.1 This hot performance test shall be carried out under the same conditions as for the Type-0 test.