

SLOVENSKI STANDARD SIST EN 12916:2016

01-april-2016

Nadomešča:

SIST EN 12916:2006

Naftni proizvodi - Določevanje aromatskih ogljikovodikov v srednjih destilatih - Metoda tekočinske kromatografije visoke ločljivosti z detekcijo lomnega količnika

Petroleum products - Determination of aromatic hydrocarbon types in middle distillates - High performance liquid chromatography method with refractive index detection

Mineralölerzeugnisse - Bestimmung der Kohlenwasserstoffgruppe in Mitteldestillaten - Hochleistungsflüssigkeitschromatografisches Verfahren (HPLC) mit Brechzahl-Detektion

Produits pétroliers - Détermination de<u>s familles d'hyd</u>rocarbures dans les distillats moyens - Méthode par chromatographie liquide à haute performance avec détection par réfractométrie différentielle 7a8c2e723dbd/sist-en-12916-2016

Ta slovenski standard je istoveten z: EN 12916:2016

ICS:

71.040.50 Fizikalnokemijske analitske Physicochemical methods of

metode analysis

75.080 Naftni proizvodi na splošno Petroleum products in

general

SIST EN 12916:2016 en,fr,de

SIST EN 12916:2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 12916:2016

https://standards.iteh.ai/catalog/standards/sist/ef321aca-05d7-4efe-8505-7a8c2e723dbd/sist-en-12916-2016

EUROPEAN STANDARD NORME EUROPÉENNE **EUROPÄISCHE NORM**

EN 12916

February 2016

ICS 75.080

Supersedes EN 12916:2006

English Version

Petroleum products - Determination of aromatic hydrocarbon types in middle distillates - High performance liquid chromatography method with refractive index detection

Produits pétroliers - Détermination des familles d'hydrocarbures dans les distillats moyens - Méthode par chromatographie liquide à haute performance avec détection par réfractométrie différentielle

Mineralölerzeugnisse - Bestimmung von aromatischen Kohlenwasserstoffgruppen in Mitteldestillaten -Hochleistungsflüssigkeitschromatographie-Verfahren mit Brechzahl-Detektion

This European Standard was approved by CEN on 13 December 2015.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. standards.iteh.ai)

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official wersions log/standards/sist/ef321aca-05d7-4efe-8505-

7a8c2e723dbd/sist-en-12916-2016 CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Cont	ents	Page
European foreword		3
1	Scope	4
2	Normative references	4
3	Terms and definitions	5
4	Principle	6
5	Reagents and materials	6
6	Apparatus	7
7	Sampling	8
8	Apparatus preparation	8
9	Calibration	
10	Procedure	12
11	Calculation iTeh STANDARD PREVIEW	14
11.1		
11.2	Retention times	14
11.3	Cut times	14.
11.4	Aromatic hydrocarbons type contental STEN 129162016	15
11.5	Polycyclic and total aromatic hydrocarbons content 321aca-05d7-4efe-8505-	15
12	Aromatic hydrocarbons type content STEN 12916:2016 Polycyclic and total aromatic hydrocarbons content 321aca-05d7-4efe-8505-7a8c2e723dbd/sist-en-12916-2016 Expression of results	15
13	Precision	
13.1	General	_
13.2	Repeatability	
13.3	Reproducibility	
14	Test report	
Annex	A (informative) Column selection and use	
	graphy	

European foreword

This document (EN 12916:2016) has been prepared by Technical Committee CEN/TC 19 "Gaseous and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin", the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2016, and conflicting national standards shall be withdrawn at the latest by August 2016.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 12916:2006.

The third version of the method has been updated to extend the scope of the method beyond the common diesel products to middle distillates with FAME contents up to 30 % (V/V) on the basis of the results of a study performed on B5, B10, and B30 samples. As the procedure remains unchanged, the precision statement from the previous version is still valid.

Additionally the method allows the use of a backflush to clean the column once the tri+-aromatics have been eluted.

(standards.iteh.ai)

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

1 Scope

This European Standard specifies a test method for the determination of the content of mono-aromatic, di-aromatic and tri+-aromatic hydrocarbons in diesel fuels that may contain fatty acid methyl esters (FAME) up to 30 % (V/V) and petroleum distillates in the boiling range from $150 \,^{\circ}\text{C}$ to $400 \,^{\circ}\text{C}$. The polycyclic aromatic hydrocarbons content is calculated from the sum of di-aromatic and tri+-aromatic hydrocarbons and the total content of aromatic compounds is calculated from the sum of the individual aromatic hydrocarbon types.

Compounds containing sulfur, nitrogen and oxygen can interfere in the determination; mono-alkenes do not interfere, but conjugated di-alkenes and poly-alkenes, if present, may do so.

The precision statement of the test method has been established for diesel fuels with and without FAME blending components, with a mono-aromatic content in the range from 6 % (m/m) to 30 % (m/m), a diaromatic content from 1 % (m/m) to 10 % (m/m), a tri+-aromatic content from 0 % (m/m) to 2 % (m/m), a polycyclic aromatic content from 1 % (m/m) to 12 % (m/m), and a total aromatic content from 7 % (m/m) to 42 % (m/m).

NOTE 1 For the purpose of this European Standard, the terms "(m/m)" and "(V/V)" are used to represent the mass fraction and the volume fraction of a material respectively.

NOTE 2 By convention, the aromatic hydrocarbon types are defined on the basis of their elution characteristics from the specified liquid chromatography column relative to model aromatic compounds. Their quantification is performed using an external calibration with a single aromatic compound for each of them, which may or may not be representative of the aromatics present in the sample. Alternative techniques and test methods may classify and quantify individual aromatic hydrocarbon types differently.

WARNING — The use of this Standard can involve hazardous materials, operations and equipment. This Standard does not purport to address all of the safety problems associated with its use. It is the responsibility of users of this standard to take appropriate measures to ensure the safety and health of personnel prior to application of the standard, and fulfil statutory and regulatory requirements for this purpose.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 14214, Liquid petroleum products — Fatty acid methyl esters (FAME) for use in diesel engines and heating applications — Requirements and test methods

EN ISO 1042, Laboratory glassware - One-mark volumetric flasks (ISO 1042)

EN ISO 3170, Petroleum liquids - Manual sampling (ISO 3170)

EN ISO 3171, Petroleum liquids - Automatic pipeline sampling (ISO 3171)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

non-aromatic hydrocarbon

compound having a shorter retention time on the specified polar column than the majority of monoaromatic hydrocarbons

3.2

mono-aromatic hydrocarbon

MAH

compound having a longer retention time on the specified polar column than the majority of non-aromatic hydrocarbons, but a shorter retention time than the majority of di-aromatic hydrocarbons

3.3

di-aromatic hydrocarbon

DAH

compound having a longer retention time on the specified polar column than the majority of monoaromatic hydrocarbons, but a shorter retention time than the majority of tri+-aromatic hydrocarbons

3.4

tri+-aromatic hydrocarbon STANDARD PREVIEW T+AH

compound having a longer retention time on the specified polar column than the majority of diaromatic hydrocarbons, but a shorter retention time than chrysene

SIST EN 12916:2016

3.5 https://standards.iteh.ai/catalog/standards/sist/ef321aca-05d7-4efe-8505-

polycyclic aromatic hydrocarbon_{a8c2e723dbd/sist-en-12916-2016}

POLY-AH

sum of the di-aromatic hydrocarbons and tri+-aromatic hydrocarbons

3.6

total aromatic hydrocarbon

sum of the mono-aromatic hydrocarbons, di-aromatic hydrocarbons and tri+-aromatic hydrocarbons

Note 1 to entry: Published and unpublished data indicate that the major constituents for each hydrocarbon type may include:

- a) non-aromatic hydrocarbons: acyclic and cyclic alkanes (paraffins and naphthenes), mono-alkenes (if present),
- b) MAHs: benzenes, tetralins, indanes and higher naphthenobenzenes (e.g. octahydrophenanthrenes), thiophenes, styrenes, conjugated polyalkenes,
- c) DAHs: naphthalenes, biphenyls, indenes, fluorenes, acenaphthenes, benzothiophenes and dibenzothiophenes,
- d) T+AHs: phenanthrenes, pyrenes, fluoranthenes, chrysenes, triphenylenes, benzanthracenes.

3.7

fatty acid methyl ester

FAME

mixture of fatty acid methyl esters derived from vegetable oil or animal fats and complying to the specification defined in EN 14214

4 Principle

A known mass of sample is diluted with heptane and a fixed volume of this solution injected into a high performance liquid chromatograph fitted with a polar column. This column has little affinity for non-aromatic hydrocarbons, while exhibiting a strong selectivity for aromatic hydrocarbons. As a result of this selectivity, the aromatic hydrocarbons are separated from the non-aromatic hydrocarbons and into distinct bands according to their ring structure, i.e. MAH, DAH and T+AH compounds.

The column is connected to a refractive index detector which detects the components as they elute from the column. The electronic signal from the detector is continually monitored by a data processor. The amplitudes of the signals from the aromatics in the sample are compared with those obtained from calibration standards in order to calculate the mass fraction of MAHs, DAHs and T+AHs in the sample. The sum of the DAHs and T+AHs mass fractions is reported as the mass fraction of POLY-AH, and the sum of the MAHs, DAHs and T+AHs mass fractions is reported as the mass fraction of total aromatic hydrocarbons.

After the aromatics have eluted from the column it may be backflushed to allow any remaining components such as FAME to elute in a backflush peak. This will allow for a better cleaning of the column but care should be taken as it can affect the lifetime of the column.

5 Reagents and materials

5.1 General

The highest purity reagents and materials available should be used; those required to be of high performance liquid chromatography (HPLC) grade are commercially available from major suppliers.

5.2 Cyclohexane, of 99 % (m/m) minimum purity (CAS registry number 110-82-7)

SIST EN 12916:2016

NOTE Cyclohexane can contrain bedzenetas an impurity dards/sist/ef321aca-05d7-4efe-8505-7a8c2e723dbd/sist-en-12916-2016

5.3 Heptane, HPLC analytical grade, as the mobile phase (CAS RN 142-82-5)

Batch to batch variation of the solvent water content, viscosity, refractive index, and purity can cause unpredictable column behaviour. Drying (for example, by standing over activated molecular sieve type 5A) and filtering the mobile phase may help reducing the effect of trace impurities present in the solvent.

It is recommended practice to de-gas the mobile phase before use; this can be done conveniently online or off-line by helium sparging, vacuum degassing or ultrasonic agitation. A failure to de-gas the mobile phase can lead to negative peaks.

- **5.4 1-Phenyldodecane**, of 98 % (*m*/*m*) minimum purity (CAS RN 123-01-3)
- **5.5 1,2-Dimethylbenzene** (*o*-xylene), of 98 % (*m/m*) minimum purity (CAS RN 95-47-6)
- **5.6 Hexamethylbenzene**, of 98 % (*m/m*) minimum purity (CAS RN 87-85-4)
- **5.7** Naphthalene, of 98 % (m/m) minimum purity (CAS RN 91-20-3)
- **5.8** Fluorene, of 98 % (m/m) minimum purity (CAS RN 86-73-7)
- **5.9 Phenanthrene**, of 98 % (m/m) minimum purity (CAS RN 85-01-8)
- **5.10 Dibenzothiophene**, of 95 % (*m/m*) minimum purity (CAS RN 132-65-0)

- **5.11 9-Methylanthracene**, of 95 % (m/m) minimum purity (CAS RN 779-02-2)
- **5.12 Chrysene**, of 95 % (*m*/*m*) minimum purity (CAS RN 218-01-9)
- **5.13 FAME**, compliant to EN 14214

WARNING — Protective gloves should be worn when handling aromatic compounds.

6 Apparatus

- **6.1 Liquid chromatograph**, consisting of a high performance instrument capable of pumping the mobile phase at flow rates from 0.5 ml/min to 1.5 ml/min, with a precision better than 0.5 % and a pulsation of < 1 % full scale deflection under the test conditions described in Clause 8.
- **6.2 Sample injection system**, capable of nominally injecting $10\,\mu l$ of sample solution with a repeatability better than $1\,\%$.

Equal and constant volumes of the calibration and sample solutions are injected into the chromatograph. Both manual and automatic sample injection systems, using either complete or partial filling of the sample loop, can meet these repeatability requirements when used correctly. When using the partial filling mode, it is recommended that the injection volume is less than half the total loop volume. For complete filling of the loop, best results are obtained by overfilling the loop at least six times.

ITEM STANDARD PREVIEW

The repeatability of the injection system may be checked by comparing peak areas from at least four injections of the system calibration standard (see 8.3). en. al.

Sample and calibration injection volumes different from 10 μ l (typically in the range 3 μ l to 20 μ l) may be used provided they meet the requirements for injection repeatability, refractive index sensitivity and linearity (see 9.4), and column resolution (see 8.9)_{n-12916-2016}

6.3 Sample filter, if required (see 10.1), consisting of a microfilter of porosity $0.45\,\mu m$ or less, chemically inert towards hydrocarbon solvents, for the removal of particulate matter from the sample solutions.

NOTE polytetrafluorethyleen (PTFE) filters have been found to be suitable.

- **6.4 Column system**, consisting of a stainless steel HPLC column(s) packed with a commercial 3 μ m, 5 μ m or 10 μ m amino-bonded (or amino/cyano-bonded) silica stationary phase meeting the resolution requirements given in 8.6, 8.7, 8.9 and 8.11 . See Annex A for guidance on the selection and use of suitable column systems.
- **6.5 Temperature controls** for different parts of the apparatus (column, sample injection system, solvent, refractive index detector). Maintain the sample injection system at the same temperature as the sample solution, for the column a heating block or an air-circulating HPLC column oven can be used. Also, a temperature-controlled laboratory, capable of maintaining a constant temperature in the range $(20 \pm 1)^{\circ}$ C to $(40 \pm 1)^{\circ}$ C can be used.

The refractive index detector is sensitive to both sudden and gradual changes in the temperature of the eluent. All necessary precautions should be taken to establish constant temperature conditions throughout the liquid chromatograph system. The temperature should be optimised depending on the stationary phase.

6.6 Refractive index detector, capable of being operated over the refractive index range 1,3 to 1,6 and giving a linear response over the calibration ranges with a suitable output signal for the data system.

NOTE If the detector is equipped with a device for independent temperature control, it is recommended that it is set at the same temperature as the column oven.

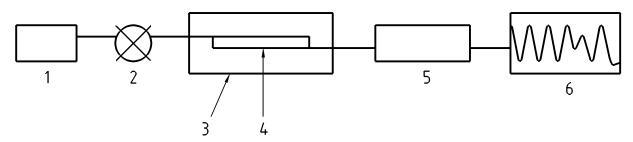
6.7 Computer or computing integrator, compatible with the refractive index detector, having a minimum sampling rate of 1 Hz and capable of peak area and retention time measurements. It shall also have minimum capabilities for post-analysis data processing such as baseline correction and reintegration.

NOTE The ability to perform automatic peak detection and identification and to calculate sample concentrations from peak area measurements is recommended, but is not essential.

- **6.8 Volumetric flasks**, 10 ml and 100 ml capacity, conforming to grade A of EN ISO 1042.
- **6.9 Analytical balance**, with an accuracy of \pm 0,000 1 g.

7 Sampling

Unless otherwise specified in the commodity specification, samples shall be taken as described in EN ISO 3170 or EN ISO 3171 and/or in accordance with the requirements of national standards or regulations for the sampling of the product under test.


(standards.iteh.ai)

8 Apparatus preparation

SIST EN 12916:2016

8.1 Set up the liquid chromatograph (6.1), sample injection system (6.2), column (6.4), refractive index detector (6.6) and computing integrator (6.7) in accordance with the manufacturer's manuals. If a column oven is used (6.5), install the HPLC column in the column oven. Maintain the sample injection system at the same temperature as the sample solution; in most cases this should be at room temperature.

NOTE Regular maintenance of the liquid chromatograph and its components is important to ensure consistent performance. Leakages and partial blockage of filters, frits, injector needles and valve rotors can produce flow rate inconsistencies and poor injector repeatability.

Key

2

- 1 pump 4 column
 - injection device 5 refractive index detector
 - oven 6 data acquisition system

Figure 1 — Diagrammatic representation of a liquid chromatograph

8.2 Adjust the flow rate of the mobile phase to a constant between 0,8 ml/min and 1,2 ml/min and ensure the reference cell of the refractive index detector is full of mobile phase. Allow the temperature of the column and of the refractive index detector, if it is equipped with temperature control, to stabilize.

In order to minimize instrument drift, the reference cell of the detector should be filled with mobile phase, either by flushing mobile phase through the reference cell immediately prior to the analysis, and then isolating the reference cell to prevent evaporation, or by compensating for evaporation by supplying a steady flow of mobile phase through the reference cell. The flow should be optimized so that cell mismatch due to drying-out (reference cell) or temperature or pressure gradients (reference or analysis cells, depending the type of detector) are minimized; with some detectors this can be accomplished using a mobile phase flow through the reference cell of one tenth of that through the analysis cell.

- **8.3** Prepare into a 100 ml volumetric flask a system calibration standard 1 (SCS1) by weighing, to the nearest 0.001 g.
- (1,0 ± 0,1) g cyclohexane (5.2),
- (0,1 ± 0,01) g 1-phenyldodecane (5.4),
- (0,5 ± 0,05) g 1,2 dimethylbenzene (5.5),
- (0,1 ± 0,01) g hexamethylbenzene (5.6), ARD PREVIEW
- (0,1 ± 0,01) g naphthalene (5.7) tandards.iteh.ai)
- (0,05 ± 0,005) g dibenzothiophene (5.10), and
- (0,05 ± 0,005) g methylanthracene (5.11).

 //a8c2e723dbd/sist-en-12916-2016

Place the flask and its contents into an ultrasonic bath until a visual examination shows that all the components have dissolved into the 1,2 dimethylbenzene/cyclohexane mixture. Remove from the ultrasonic bath and make up to the mark with heptane.

The SCS1 may be kept for at least one year if stored in a tightly stoppered bottle in a cool dark place (for example in a refrigerator).

8.4 Prepare into a 100 ml volumetric flask a system calibration standard 2 (SCS2) by weighing, to the nearest 0,001 g, (0.4 ± 0.1) g FAME (5.13) and (0.04 ± 0.01) g chrysene (5.12) and making up to the mark with heptane (5.3). Keep the solution into an ultrasonic bath at 35 °C.

Ensure the appearance is homogeneous without deposits of chrysene on the bottom.

NOTE 25 min has been found to be a suitable time for all the components to become dissolved.

The SCS2 may be kept for at least one year if stored in a tightly stoppered bottle in a cool dark place (for example in a refrigerator).

8.5 When operating conditions are steady, as indicated by a stable horizontal baseline, inject 10 μ l of the SCS1 (8.3). Ensure the baseline drift over the period of the HPLC analysis run is less than 1 % of the peak height for cyclohexane.

NOTE A baseline drift greater than this indicates problems with the temperature control of the column/refractive index detector and/or material eluting from the column.