
**Carbon-fibre-reinforced composites —
Determination of the resin, fibre and void
contents**

*Composites renforcés de fibres de carbone — Détermination des
teneurs en résine, en fibre et en vide*

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 14127:2008](#)

<https://standards.iteh.ai/catalog/standards/iso/6a65236a-6637-4c6e-bd34-4fdf8b912d61/iso-14127-2008>

Reference number
ISO 14127:2008(E)

© ISO 2008

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 14127:2008](#)

<https://standards.iteh.ai/catalog/standards/iso/6a65236a-6637-4c6e-bd34-4fdf8b912d61/iso-14127-2008>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
1 Scope	1
2 Normative references	1
3 Health and safety	2
4 Terms and definitions	2
5 Principle	2
6 Conditioning of test sample	3
7 Apparatus and reagents	3
8 Test specimens	4
9 Density measurements	4
10 Procedures	5
11 Calculation and expression of results	7
12 Precision	9
13 Test report	9

iteh Standards Document Preview

[ISO 14127:2008](#)

<https://standards.iteh.ai/catalog/standards/iso/6a65236a-6637-4c6e-bd34-4fdf8b912d61/iso-14127-2008>

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 14127 was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 13, *Composites and reinforcement fibres*.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 14127:2008](#)

<https://standards.iteh.ai/catalog/standards/iso/6a65236a-6637-4c6e-bd34-4fdf8b912d61/iso-14127-2008>

Carbon-fibre-reinforced composites — Determination of the resin, fibre and void contents

1 Scope

This International Standard specifies methods for calculating the resin, fibre and void contents of a carbon-fibre-reinforced composite from the densities of the resin, the fibre and the composite and the mass of fibre in the composite (method A) and for calculating the fibre content from the thickness of the composite (method B).

Method A specifies three different resin removal procedures for the determination of the mass of fibre in the composite (viz a combustion procedure, a procedure by digestion in nitric acid and a procedure by digestion in a mixture of sulfuric acid and hydrogen peroxide). The selection of the procedure to be used is made by considering the combustibility of the resin used in the composite, its ability to decompose and the type of resin concerned. It should be noted that method A is only of limited applicability when filled resins are present that could prevent complete dissolution and/or combustibility of the resin.

Method B (thickness measurement method) is only applicable to composites moulded from prepgs of known fibre mass per unit area.

(<https://standards.iteh.ai>)

2 Normative references

Document Preview

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

<https://standards.iteh.ai/catalog/standards/iso/6a65236a-6637-4c6e-bd34-4fdf8b912d61/iso-14127-2008>

ISO 291, *Plastics — Standard atmospheres for conditioning and testing*

ISO 472, *Plastics — Vocabulary*

ISO 1183-1, *Plastics — Methods for determining the density of non-cellular plastics — Part 1: Immersion method, liquid pyknometer method and titration method*

ISO 1183-2, *Plastics — Methods for determining the density of non-cellular plastics — Part 2: Density gradient column method*

ISO 1183-3, *Plastics — Methods for determining the density of non-cellular plastics — Part 3: Gas pyknometer method*

ISO 5725-1, *Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions*

ISO 5725-2, *Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method*

ISO 5725-3, *Accuracy (trueness and precision) of measurement methods and results — Part 3: Intermediate measures of the precision of a standard measurement method*

ISO 6353-2, *Reagents for chemical analysis — Part 2: Specifications — First series*

ISO 10119, *Carbon fibre — Determination of density*

3 Health and safety

This International Standard limits itself to describing the determination of the resin, fibre and void contents of composites reinforced with carbon fibre. The conditions under which the test specimens, apparatus and reagents are handled shall comply with the national regulations in force in each country and the staff shall be informed of the hazards involved and appropriate precautions taken.

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 472 and the following apply.

4.1

fibre content by mass

ratio of the mass of fibre in a composite to the total mass of the composite

NOTE It is expressed as a percentage.

4.2

fibre content by volume

ratio of the volume of fibre in a composite to the total volume of the composite

NOTE It is expressed as a percentage.

4.3

void content

ratio of the volume of the voids (hollow spaces) in a composite to the total volume of the composite

NOTE It is expressed as a percentage.

5 Principle

[ISO 14127:2008](#)

5.1 [Method A \(resin removal method\)](#) /iso/6a65236a-6637-4c6e-bd34-4fdf8b912d61/iso-14127-2008

5.1.1 Procedure A1: combustion procedure

The mass of a test specimen is determined before and after combustion of the resin in the upper part of the reducing (non-oxygen) flame of a Bunsen burner.

NOTE The combustion procedure makes use of the relative ease of decomposition of resins, compared to carbon fibres, in inert gases. The procedure consists of heating a specimen of composite material with the reducing flame of a Bunsen burner so that only the resin is removed by combustion. However, its application is limited to resins that decompose completely by combustion. Therefore, this procedure is not applicable to resins that are not completely combustible, such as epoxy novolac and brominated systems. There are also drawbacks such as the fact that the accuracy of the combustion procedure is slightly inferior to that of the nitric acid digestion procedure and the sulfuric acid/hydrogen peroxide digestion procedure. Nonetheless, it is useful as a rapid test procedure which can be carried out safely and simply.

Because of the lack of reliability of the combustion procedure, its use shall be as agreed between the purchaser and supplier.

5.1.2 Procedure A2: nitric acid digestion procedure

The mass of a test specimen is determined before and after digestion of the resin with concentrated nitric acid, which does not attack the carbon fibres excessively.

NOTE Both the nitric acid digestion procedure and the sulfuric acid/hydrogen peroxide digestion procedure make use of the fact that digestion of resins in a hot bath of nitric acid or sulfuric acid/hydrogen peroxide mixture is rapid compared