INTERNATIONAL STANDARD

First edition 2005-04-15

Cryogenic vessels — Pumps for cryogenic service

Récipients cryogéniques — Pompes pour service cryogénique

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 24490:2005</u> https://standards.iteh.ai/catalog/standards/sist/8d7e8c90-4e61-4d43-80fdaa5c852a04c5/iso-24490-2005

Reference number ISO 24490:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 24490:2005</u> https://standards.iteh.ai/catalog/standards/sist/8d7e8c90-4e61-4d43-80fdaa5c852a04c5/iso-24490-2005

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forew	ord	. iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4 4.1 4.2 4.3	Requirements for pump General Materials Design	2 2
5 5.1 5.2	Test procedures Prototype testing Production testing	6
6	Cleanliness	7
7	Marking	7
Annex Annex	A (informative) Guidance on installation design	8
	oxygen	10
Bibliog	graphy	14
	ISO 24490:2005 https://standards.iteh.ai/catalog/standards/sist/8d7e8c90-4e61-4d43-80fd-	

aa5c852a04c5/iso-24490-2005

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 24490 was prepared by Technical Committee ISO/TC 220, Cryogenic vessels.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 24490:2005</u> https://standards.iteh.ai/catalog/standards/sist/8d7e8c90-4e61-4d43-80fdaa5c852a04c5/iso-24490-2005

Cryogenic vessels — Pumps for cryogenic service

1 Scope

This International Standard specifies the minimum requirements for the design, manufacture and testing of pumps for cryogenic service.

This International Standard is applicable to centrifugal pumps. However the principles may be applied to other types of pump (e.g. reciprocating pumps).

This International Standard also gives guidance on the design of installations (see Annex A).

It does not specify requirements for operation or maintenance.

NOTE For cryogenic fluids, see ISO 21029-1, ISO 20421-1 and/or ISO 21009-1.

2 Normative references STANDARD PREVIEW

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. 244902005

https://standards.iteh.ai/catalog/standards/sist/8d7e8c90-4e61-4d43-80fd-

ISO 5198:1987, Centrifugal, mixed flow and axial pumps 20-Code for hydraulic performance tests — Precision grade

ISO 21010, Cryogenic vessels — Gas/materials compatibility

ISO 21028-1, Cryogenic vessels — Toughness requirements for materials at cryogenic temperature — Part 1: Temperatures below – 80 °C

ISO 21028-2, Cryogenic vessels — Toughness requirements for materials at cryogenic temperature — Part 2: Toughness requirements for temperatures between – 80 °C and – 20 °C

ISO 23208, Cryogenic vessels — Cleanliness for cryogenic service

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 nominal size DN

alphanumeric designation of size for components of a pipework system, which is used for reference purposes.

NOTE 1 It comprises the letters DN followed by a dimensionless whole number which is indirectly related to the physical size, in millimetres, of the bore or outside diameter of the end connections.

NOTE 2 The number following the letters DN does not represent a measurable value and should not be used for calculation purposes except where specified in the relevant standard.

NOTE 3 In those standards which use the DN designation system, any relationship between DN and component dimensions should be given, e.g. DN/OD or DN/ID.

NOTE 4 Adapted from ISO 6708.

3.2

nominal pressure

PN

alphanumeric designation used for reference purposes related to a combination of mechanical and dimensional characteristics of a component of a pipework system

It comprises the letters PN followed by a dimensionless number equal to at least the maximum allowable NOTF 1 pressure.

NOTE 2 For a pump, PN can be different for inlet and outlet.

3.3

specified minimum temperature

lowest temperature for which the pump is specified

3.4

duty point

performance point defined by pressure or head and volume or mass flow rate

3.5

NPSH

net positive suction head iTeh STANDARD PREVIEW

inlet total head increased by the head (in flowing liquid) corresponding to the atmospheric pressure at the test location and decreased by the sum of the head corresponding to the vapour pressure of the pump liquid at the inlet temperature and the inlet impeller height

ISO 24490:2005 NOTE See also ISO 5198:11997/sTable ds.itch.ai/catalog/standards/sist/8d7e8c90-4e61-4d43-80fdaa5c852a04c5/iso-24490-2005

Requirements for pump 4

4.1 General

It is a requirement of this International Standard that a cryogenic pump shall first comply with appropriate general International Standards. In the event of conflict, the requirements of this International Standard shall take precedence over the general International Standards.

4.2 Materials

4.2.1 General

Materials of construction shall be selected taking into consideration that cryogenic pumps operate at low temperature, often in a damp environment, and at times with liquid oxygen or flammable fluids.

The minimum requirements given in 4.2.2, 4.2.3 and 4.2.4 shall apply.

Mechanical properties at low temperature 4.2.2

Metallic materials which are under stress at low temperature and which exhibit a ductile/brittle transition (such as ferritic steels) shall have minimum toughness values in accordance with ISO 21028-1 or ISO 21028-2 as appropriate.

Metallic materials which can be shown to have no ductile/brittle transition do not require impact testing.

Non-metallic materials are generally used only for seals or heat barriers. If such materials are to be used for structural parts, the stress levels and material impact values shall be shown to be acceptable for the intended use.

4.2.3 Corrosion resistance

Materials should be resistant to, or protected from, atmospheric corrosion. Where this is not achievable, a suitable corrosion allowance shall be considered.

4.2.4 Oxygen compatibility

If the specified minimum service temperature is equal to or less than the boiling point of air, or the pump is intended for oxygen service, the materials which are, or are likely to come, in contact with oxygen or oxygen-enriched air shall be oxygen-compatible in accordance with ISO 21010.

If the pump is employed for oxidising cryogenic fluids, e.g. nitrous oxide, the requirements for oxygen compatibility should be taken into consideration.

Materials should be selected that minimise the potential for ignition and inhibit sustained combustion.

Suitable material properties are

- high ignition temperature,
- high thermal conductivity, h STANDARD PREVIEW
- low heat of combustion.

(standards.iteh.ai)

Table B.1 lists materials found through testing and operating experience to be particularly suitable for centrifugal cryogenic pumps in oxygen service. Materials other than those identified in Table B.1 may be used, but their selection shall be justified by specific testing or long-term experience in this application.

For (any) parts of the pump which are, or are likely to come, in contact with oxygen and which could be exposed to energy sources such as friction, aluminium or aluminium alloy including aluminium bronzes shall not be used. The use of aluminium or aluminium alloy for any other parts shall only be adopted after careful consideration.

Stainless steel shall not be used for exposed thin components. Exceptions allowed are seal bellows, trapped shims or gaskets and screw-locking devices of stationary parts where knowledge of past satisfactory performance is available. However, suitable alternative materials, e.g. nickel or nickel alloy, Monel and Inconel, should be considered.

NOTE Tin bronze has been found to be most suitable for the main "wetted" pump components. The most common aluminium bronzes, which typically contain between 6 % and 11 % aluminium, have relatively high heats of combustion and, if combustion occurs, are practically impossible to extinguish in an oxygen environment.

4.3 Design

4.3.1 General

Pumps for cryogenic service shall met the requirements of ISO 5198.

4.3.2 Pressure-containing parts

The high-pressure side of the pump shall be designed to withstand at least the nominal outlet pressure. The low-pressure side shall be designed to withstand at least the nominal inlet pressure.

The material stress level from pressure may not be the dominant factor in pump design. The allowable stress level may be calculated at the pressure rating, using ISO 21009-1 for guidance. For any parts subject to fatigue, material stress levels should not exceed one-half of the infinite fatigue life for the part in question.

4.3.3 Performance

The pump design and installation shall meet the performance requirements specified on a data sheet (or similar document). Examples of a data sheet can be found in ISO 5199 and ISO 9908.

4.3.4 Clearances

Clearances between moving and stationary parts within the pump shall be as large as practical, consistent with good hydraulic performance and sealing. Material selection for components should take into account the often large differences in expansion coefficients to ensure satisfactory clearances and interferences at the operating temperatures and during cool-down.

4.3.5 Prevention of rubbing

The consequences of bearing failure or the consumption of parts by wear shall be considered, particularly in pumps designed for liquid oxygen duty.

4.3.6 Fastenings

All internal fasteners shall be secured to prevent them loosening in service (e.g. friction nuts, tab washers).

Consideration shall be given to more adequately securing items which might normally be held in place by an interference fit only (e.g. wear rings). These components can cool down more quickly than others and become temporarily loose.

ISO 24490:2005

4.3.7 Warm bearings https://standards.iteh.ai/catalog/standards/sist/8d7e8c90-4e61-4d43-80fd-

aa5c852a04c5/iso-24490-2005

Rolling-element bearings designed to run warm shall be located or protected such that freezing of the lubricating grease or oil is avoided. The effect of ice build-up over a period shall be considered. This can result in overcooling of the bearing and can allow shaft-seal leakage to be forced directly into the driver bearing. Motor-bearing heaters may be considered for cold standby pumps.

4.3.8 Cold bearings

For bearings designed to run cold, lubricated by the cryogenic fluid, the use of materials and design arrangements that can safely withstand short-term dry running shall be considered.

4.3.9 Bearing lubrication

For direct-coupled cryogenic pumps, grease and oils shall be suitable for all oxidising and predictable offset conditions. The lubricants should typically be suitable down to -40 °C.

Sealed bearings are preferred. Where bearing re-greasing *in situ* is required, grease drain plugs should be provided to reduce the risk of accumulations of grease within the motor housing.

Liquid oxygen pumps shall be constructed so that possible oxygen leakage cannot contact any hydrocarbon lubricant. If this cannot be prevented with certainty, the use of oxygen-compatible lubricants meeting the requirement of ISO 21010 shall be considered. It should be noted, however, that such oxygen-compatible lubricants are less able to protect the bearing against corrosion, generally reduce the ability of the bearing to withstand load and speed, and may have some adverse reaction with some material combinations.

4.3.10 Shaft seals

Shaft seals are usually either mechanical rubbing face or labyrinth type. Both have a high possibility of leakage.

The design of the mechanical seal shall prevent metal-to-metal rubbing between the seal carrier and the rotating seal ring when the soft face material wears out.

For pumps in oxygen service, a protective sleeve shall be fitted between the bellows of any mechanical seal and the shaft.

Labyrinth shaft seals shall be treated as systems, engineered for the particular application. For pumps in oxygen service, injected gas may be an inert gas or oxygen.

Leakage-detection devices should be considered, e.g. a low-temperature trip.

A slinger or other deflection device shall be used to prevent direct impingement of shaft seal leakage on the driver bearing.

4.3.11 Purging

A tapping for a dry inert gas purge may be used to

- a) prevent the ingress of moisture (and possibly ice build-up) within the seal area,
- b) prevent the ingress of moisture into areas using lubricants (oxygen-compatible when required, see 4.2.4),
- c) provide a barrier between oxygen-compatible and oxygen-non-compatible parts of a pump (e.g. cold end and mechanical drive).

ISO 24490:2005

4.3.12 Prevention of particle contamination standards/sist/8d7e8c90-4e61-4d43-80fd-

aa5c852a04c5/iso-24490-2005

Appropriate devices such as filters shall be used if there is a risk of particle contamination in service.

4.3.13 Specific requirement for flammable fluids

The rate of leakage from the pump and its accessories shall not exceed 1 N mm³/s, and its design should prevent the possibility of dangerous fluid accumulations. The leakage from any higher flowrates (from seal areas, etc.) shall be collected and vented to a safe location. If electric devices are used, they shall be suitable for the hazard zone, in accordance with the relevant regulations. Pumps shall have sufficient electrical continuity to prevent build-up of static electricity.

4.3.14 Protection against over-pressurisation

The design of the pump should avoid the possibility of any trapped cryogenic liquid. Any area of the pump or its accessories that could become inadvertently pressurised beyond its design conditions shall be provided with a method of pressure relief, in particular, any vacuum-insulated space that could become pressurised by leakage through a defect.

4.3.15 Pump motors

Externally mounted electric motors shall be the totally enclosed fan-cooled type, for pumps for which the specified minimum temperature is equal to or less than the boiling point of air or the pump is intended for oxygen service.

5 Test procedures

5.1 Prototype testing

5.1.1 General

At least one pump representative of any new pump design shall be subjected to the following tests.

These tests shall be repeated if any one of the following parameters changes:

- manufacturer;
- frame size;
- material type;
- increase in maximum pressure or speed.

5.1.2 Design evaluation

The prototype pump shall be inspected to ensure that the design satisfies the requirements detailed in Clause 4.

5.1.3 Initial tests **iTeh STANDARD PREVIEW**

Before conducting the test according 5.1.4, the pump shall be subjected to the tests normally applied as production tests described in 5.2, except that the hydrostatic pressure test shall be carried out at 3 times the outlet and inlet PN.

5.1.4 Cryogenic test

<u>ISO 24490:2005</u> https://standards.iteh.ai/catalog/standards/sist/8d7e8c90-4e61-4d43-80fdaa5c852a04c5/iso-24490-2005

5.1.4.1 General test conditions

Pumps with a specified minimum service temperature less than or equal to -196 °C may be tested using liquid nitrogen. A deviation from -196 °C of ± 10 % is allowed in temperature measurement.

Pumps with a specified minimum service temperature higher than – 196 °C shall be tested at or below their specified minimum service temperature, \pm 10 %.

If the cryogenic fluid used for testing is different from that specified for final use, density corrections for power, etc. are acceptable.

5.1.4.2 Mechanical integrity test

Centrifugal pumps shall be run at a minimum of five speeds. These shall include minimum, normal and maximum service speeds. (This shall allow a head/flow pump characteristic curve to be generated.) The run at normal service speed shall be at least 1 h duration.

Where pump size and flow rate are large, a reduced test time is acceptable provided required temperatures are reached.

As part of the test, the pump shall be stopped and started a minimum of ten times.

Throughout the test, the pump shall be seen to run normally with no visible leakage, excessive vibration or distress. For flammable fluids, additional requirements for leak-tightness apply that shall be demonstrated during type testing.

5.1.4.3 Net positive suction head (NPSH) test

The pump shall be tested to establish its NPSH requirement across its range of flow rate.

Following the test, the pump shall be warmed up, disassembled into its major component parts and examined. No significant indications of touching, rubbing or distress shall be observed. (Marking on impeller, labyrinth seal and bushings, etc., is acceptable.)

5.2 Production testing

5.2.1 General

Each pump shall satisfactorily pass the following production tests of the appropriate International Standards as indicated in 4.1.

5.2.2 Hydrostatic pressure test

The pump pressure-retaining envelope (casing flanges, etc.) shall be tested to 1,5 times the outlet and inlet PN. (Testing is normally to 1,5 times the outlet PN, unless special provision for separately testing the highand low-pressure sections has been incorporated at the design stage.)

The pressure during testing shall be maintained for a sufficient period of time to permit complete examination of parts under pressure. The results of the hydrostatic test shall be considered satisfactory if, when pressure is held for 5 min, no gross plastic deformation, leaks or seepage (through the casing or casing joint) from the pump is observed.

5.2.3 Mechanical running and performance tests.iteh.ai)

The pump shall be run for a minimum of five minutes at its quoted duty point(s), with cryogenic fluid temperature conditions as stated in 5.1.4. Throughout the test the pump shall be seen to run normally with no visible leakage, excessive vibrations or distress is 0.24490-2005

Where the cryogenic fluid used on test is different from that specified for final use, density, corrections for power, etc., are acceptable.

6 Cleanliness

The pumps shall be dispatched with a cleanliness level and packing integrity which satisfies ISO 23208.

7 Marking

The pump body or identification plate shall be marked in accordance with the applicable pump International Standard, and shall include the fluids for which the pump is suitable.