INTERNATIONAL STANDARD

ISO 9005

Second edition 2007-03-01

Nuclear energy — Uranium dioxide powder and sintered pellets — Determination of oxygen/uranium atomic ratio by the amperometric method

Énergie nucléaire — Poudre et pastilles frittées de dioxyde d'uranium — Détermination du rapport atomique oxygène/uranium par la méthode

iTeh STampérométriqueD PREVIEW

(standards.iteh.ai)

ISO 9005:2007 https://standards.iteh.ai/catalog/standards/sist/c21615e7-67ac-4abe-9cfc-8910824c48b2/iso-9005-2007

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9005:2007 https://standards.iteh.ai/catalog/standards/sist/c21615e7-67ac-4abe-9cfc-8910824c48b2/iso-9005-2007

© ISO 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents		Page
Forewordiv		
1	Scope	1
2	Principle	1
3	Reactions	
4	Reagents	1
5	Apparatus	2
6	Preparation of the test sample	
7	Procedure	7
8	Expression of results	8
9	Test report	10
Rihl	liography	11

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9005:2007 https://standards.iteh.ai/catalog/standards/sist/c21615e7-67ac-4abe-9cfc-8910824c48b2/iso-9005-2007

ii

ISO 9005:2007(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 9005 was prepared by Technical Committee ISO/TC 85, *Nuclear energy*, Subcommittee SC 5, *Nuclear fuel technology*.

This second edition cancels and replaces the first edition (ISO 9005:1994), which has been technically revised. (standards.iteh.ai)

ISO 9005:2007 https://standards.iteh.ai/catalog/standards/sist/c21615e7-67ac-4abe-9cfc-8910824c48b2/iso-9005-2007

Nuclear energy — Uranium dioxide powder and sintered pellets — Determination of oxygen/uranium atomic ratio by the amperometric method

1 Scope

This International Standard specifies an analytical method for the determination of the oxygen/uranium atomic ratio in uranium dioxide powder and sintered pellets.

The method is applicable to reactor grade samples of hyper-stoichiometric uranium dioxide powder and pellets. The presence of reducing agents or residual organic additives invalidates the procedure.

2 Principle

- 2.1 The test sample is dissolved in orthophosphoric acid, which does not oxidize the uranium(IV) from UO_2 molecules. Thus, the uranium(VI) that is present in the dissolved solution is from UO_3 and/or U_3O_8 molecules only, and is proportional to the excess oxygen in these molecules. The uranium(VI) content of the solution is determined by titration with a previously standardized solution of ammonium iron(II) sulfate hexahydrate in orthophosphoric acid. The end-point of the titration is determined amperometrically using a pair of polarized platinum electrodes. The oxygen/uranium ratio is calculated from the uranium(VI) content.
- **2.2** A portion, weighing about 1 g, of the fest sample is dissolved in orthophosphoric acid. The dissolution is performed in an atmosphere of nitrogen or carbon dioxide when sintered material is being analysed. When highly sintered material is being analysed, the dissolution is performed at a higher temperature in purified phosphoric acid from which the water has been partly removed.

https://standards.iteh.ai/catalog/standards/sist/c21615e7-67ac-4abe-9cfc

The cooled solution is titrated with an orthophosphoric acid solution of ammonium iron(II) sulfate, which has previously been standardized against potassium dichromate. The end-point of the titration is detected by the sudden increase of current between a pair of polarized platinum electrodes on the addition of an excess of ammonium iron(II) sulfate solution.

3 Reactions

$$\mathsf{UO}_2^{2^+} + 2\mathsf{Fe}^{2^+} + 4\mathsf{H}^+ \to \mathsf{U}^{4^+} + 2\mathsf{Fe}^{3^+} + 2\mathsf{H}_2\mathsf{O}$$

4 Reagents

Use only reagents of recognised analytical grade and demineralised water.

- **4.1** Orthophosphoric acid, $\rho(H_3PO_4) = 1,75 \text{ g/ml.}$
- **4.2** Concentrated nitric acid, $c(HNO_3) = 14 \text{ mol/l}$; $\rho(HNO_3) = 1.4 \text{ g/ml}$.

4.3 Orthophosphoric acid, purified.

Add 1 500 ml of orthophosphoric acid (4.1) to 40 ml of nitric acid (4.2) to a cylinder quartz vessel and raise the temperature gradually to 275 °C. Maintain this temperature for 45 min while a gentle stream of nitrogen or carbon dioxide is passed through the solution. After cooling to room temperature, store the liquid in a glass bottle.

4.4 Ammonium iron(II) sulfate, approximately $c[(NH_4)_2Fe(SO_4)_2] = 0.05$ mol/l or $\rho[(NH_4)_2Fe(SO_4)_2] = 14.5$ g/l.

Heat 1 000 ml of orthophosphoric acid (4.1) to a temperature of 60 °C to 70 °C in a glass vessel. Add 20 g of ammonium iron(II) sulfate hexahydrate [(NH_4)₂Fe(SO_4)₂· $6H_2O$] and stir until dissolved. Cool and store the solution in a nitrogen or carbon dioxide atmosphere.

Standardize this solution against potassium dichromate in the conventional way with each run of samples. Calculate the molarity of the iron(II) solution.

4.5 Naturally occurring U_3O_8 standard solution, $c(U_3O_8) = 0.01$ mol/l or $\rho(U_3O_8) = 0.084$ 21 g/l.

Dissolve 0,842 1 g of pure U_3O_8 in purified orthophosphoric acid (4.3), warming if necessary. Cool and dilute to 100 ml with purified orthophosphoric acid (4.3).

NOTE The concentration of $UO_2^{2^+}$ in this solution is 0,02 mol/l. Upon dissolution, one mole of U_3O_8 forms one mole of U^{4^+} ions (non-reactive) and two moles of $UO_2^{2^+}$ ions, which is equivalent to dissolving one mole of UO_2 (non-reactive) and two moles of UO_3 . Thus, this solution contains 0,02 moles of $UO_2^{2^+}$ per litre.

8910824c48b2/iso-9005-2007

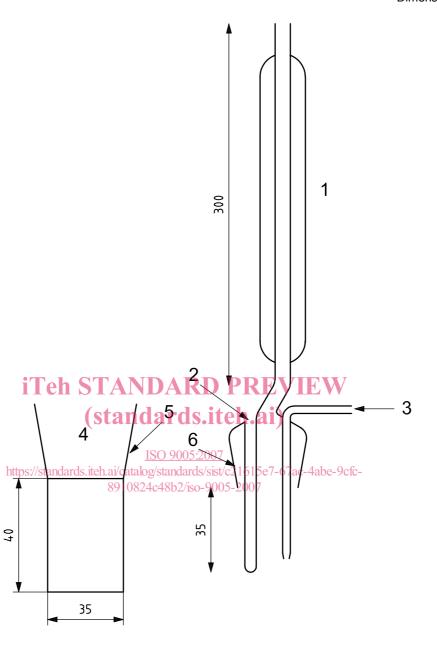
To ensure stoichiometric U₃O₈, ignition just prior to use is recommended. (Standards.iteh.a)

4.6 Nitrogen or carbon dioxide, containing less oxygen than a volume fraction of 20×10^{-6} .

https://standards.iteh.ai/catalog/standards/sist/c21615e7-67ac-4abe-9cfc-

5 Apparatus

Use laboratory apparatus and

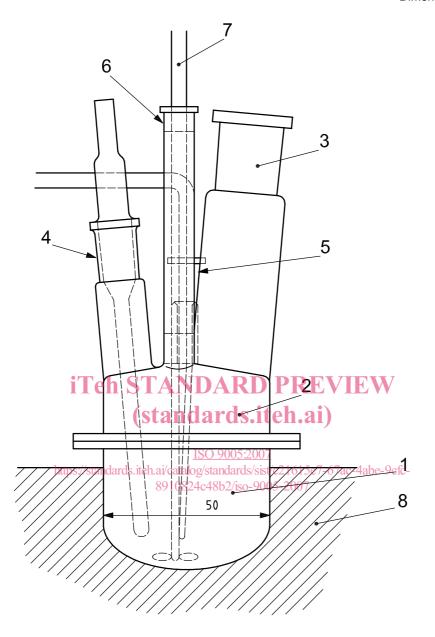

- **5.1** Inert dissolution apparatus, type A; see Figure 1.
- **5.2** Inert dissolution apparatus, type B; see Figure 2.
- **5.3** Electrode assembly; see Figure 3.

When not in use, the electrodes shall be stored in a completed titration solution; see 7.4.2.

The electrodes should be cleaned when needed as follows. Immerse the platinum electrodes in boiling concentrated nitric acid (4.2) containing 10 g/l to 20 g/l of potassium dichromate for about 5 min. Rinse with demineralized water, then immerse in 1 mol/l iron(II) sulfate solution for 30 s to 60 s and then rinse with demineralized water.

- **5.4** Bi-amperometric endpoint-detection circuit; see Figure 4.
- **5.5 Piston burette**, 5 ml or 1 ml capacity, capable of reading to 0,001 ml, fitted with a capillary end to dip into the titration solution.
- 5.6 Thermostatically controlled heating block or isomantle.

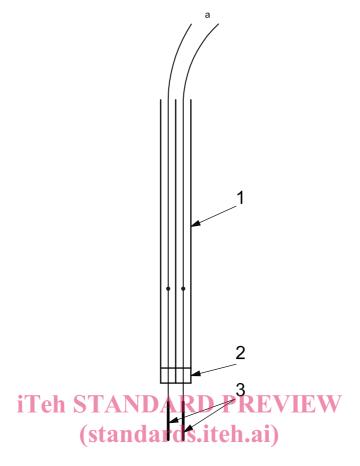
Dimensions in millimetres



Key

- 1 condenser
- 2 thermometer well
- 3 nitrogen purge
- 4 flask
- 5 ISO 383-34/35 tapered, ground socket
- 6 ISO 383-34/35 tapered, ground cone

Figure 1 — Dissolution apparatus —Type A


Dimensions in millimetres

Key

- 1 quartz dissolution vessel with ground rim
- 2 pyrex or equivalent cover with ground rim, equipped with four (items 3 to 6) joints
- 3 ISO 383-24/29 tapered ground joint for adding the test portion
- 4 ISO 383-14/23 tapered ground joint for inserting the thermometer
- 5 ISO 383-7/16 tapered groundjoint for inserting the nitrogen-purge tube
- 6 central tube for inserting the stirrer, equipped with two polytetrafluoroethylene (PTFE) bearings
- 7 quartz stirrer, with the total length of the stirring blades equal to 25 mm, rotating at a constant angular velocity of 900 r/min
- 8 electric heating mantle powered by a temperature regulator in combination with the thermocouple in the joint number 4

Figure 2 — Dissolution apparatus — Type B

Key

ISO 9005:2007

- 1 glass tubes, ID 3 mmptaped together ai/catalog/standards/sist/c21615e7-67ac-4abe-9cfc-
- 2 glass seal 8910824c48b2/iso-9005-2007
- 3 platinum electrodes (10 × 10)
- ^a To the bi-amperometric endpoint-detection circuit.

Figure 3 — Electrode assembly