INTERNATIONAL STANDARD

ISO 13899-2

First edition 2005-06-15

Steel — Determination of Mo, Nb and W contents in alloyed steel — Inductively coupled plasma atomic emission spectrometric method —

Part 2: Determination of Nb content iTeh STANDARD PREVIEW

> Aciers — Dosage du Mo, du Nb et du W dans les aciers alliés — Méthode par spectrométrie d'émission atomique avec plasma induit par haute fréquence —

Partie 2: Dosage du Nb https://standards.iteh.av/catalog/standards/sist/180d14d4-1b8d-4237-9088-4e62457fa4ct/iso-13899-2-2005

Reference number ISO 13899-2:2005(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 13899-2:2005</u> https://standards.iteh.ai/catalog/standards/sist/180d14d4-1b8d-4237-9088-4e62457fa4cf/iso-13899-2-2005

© ISO 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forew	ord	iv
1	Scope	1
2	Normative references	1
3	Principle	1
4	Reagents	2
5	Apparatus	3
6	Sampling and samples	4
7 7.1	Procedure Preparation of test solution, <i>T</i> _n	
7.2 7.3 7.4	Preparation for spectrometric measurements Pre-analysis of the test solution Preparation of calibration solutions for bracketing, $K_{l,n}$ and K_{Hn}	5 5
7.5	Analysis of test solutions	6
8 8.1 8.2	Expression of resultsS.T.A.N.D.A.R.D. PREVIEW. Method of calculation Precision	6 6 6
9	Test report	7
Annex Annex	A (normative) Procedure for the descrimination of instrumental criteria	8
•	determination of Nb in steel by ICP-AES.	
	C (informative) Additional information on the international cooperative tests	
Annex	D (informative) Graphical representation of precision data	13

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13899-2 was prepared by Technical Committee ISO/TC 17, Steel, Subcommittee SC 1, Methods of determination of chemical composition.

ISO 13899 consists of the following parts, under the general title Steel — Determination of Mo, Nb and W contents in alloyed steel — Inductively coupled plasma atomic emission spectrometric method:

— Part 1: Detemination of Mo content

ISO 13899-2:2005

- Part 2: Detemination of Nb content 9088-4e62457fa4cf/iso-13899-2-2005
- Part 3: Detemination of W content

Steel — Determination of Mo, Nb and W contents in alloyed steel — Inductively coupled plasma atomic emission spectrometric method —

Part 2: Determination of Nb content

1 Scope

This International Standard specifies a method for the determination of the niobium content in steel by means of inductively coupled plasma emission spectrometry.

This method is applicable to niobium contents between 0,005 and 5 % (mass fraction).

Normative references STANDARD PREVIEW 2

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. 3899-2:2005

ISO 648:1977, Laboratony glassware teh One mark pipettest/180d14d4-1b8d-4237-9088-4e62457fa4cf/iso-13899-2-2005

ISO 1042:1983, Laboratory glassware — One mark volumetric flasks

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods

ISO

ISO 5725-1:1994, Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions

ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method

ISO 5725-3:1994, Accuracy (trueness and precision) of measurement methods and results — Part 3: Intermediate measures of the precision of a standard measurement method

ISO 14284:1996, Steel and iron — Sampling and preparation of samples for the determination of chemical composition

Principle 3

The sample is dissolved in a hydrochloric, nitric and hydrofluoric acid mixture and fumed with a phosphoric and perchloric acid mixture. Hydrofluoric acid and an internal standard element (if used) are added and the solution is diluted to known volume. The solution is filtered and nebulized into an ICP and the intensity of the emitted light from each element is measured simultaneously with the light emitted from the internal standard element.

The method uses a calibration based on close matrix matching of the calibration solutions to the sample and close bracketing of the niobium content around the approximate concentration of niobium in the sample to be analysed. This compensates for matrix interferences and provides high accuracy, even in highly alloyed steels where spectral interferences can be severe. Nonetheless, all interferences shall be kept to a minimum and it is therefore essential that the spectrometer used meets the performance criteria specified in the method for the selected analytical lines.

In order to accurately matrix match, it is necessary to know the concentration of all elements in the sample (to the nearest percent). To this end, it may be necessary to carry out a preliminary analysis of the sample by some semi-quantitative method.

4 Reagents

During the analysis, unless otherwise stated, use only reagents of recognised analytical grade and only grade 2 water, as specified in ISO 3696.

- **4.1 Hydrofluoric acid**, HF, 40 % (m/m), ρ approximately 1,14 g/ml.
- **4.2** Hydrochloric acid, HCl, *ρ* approximately 1,19 g/ml.
- **4.3** Nitric acid, HNO₃, ρ approximately 40 g/ml.
- 4.4 Phosphoric acid, H_3PO_4 , ρ approximately 1,70 g/ml, diluted 1 + 1. **Teh STANDARD PREVIEW**
- **4.5** Perchloric acid, $HClO_4$, ρ approximately 1,54 g/ml, diluted 1 + 1. (standards.iteh.ai)
- **4.6** Fuming acid mixture, mix 100 ml of the phosphoric acid (4.4) and 300 ml of the perchloric acid (4.5). ISO 13899-2:2005
- 4.7 Internal standard solution;//ht000.mg/lh.ai/catalog/standards/sist/180d14d4-1b8d-4237-

9088-4e62457fa4cf/iso-13899-2-2005

Choose a suitable element to be added as internal standard and prepare a 1 000 mg/l solution. The internal standard chosen shall

- be pure,
- not be present in the sample, and
- not interfere with analytical wavelengths, nor should the internal standard element wavelength be interfered with by elements in the test solution.

The internal standard shall be soluble in the acids used and it shall not cause precipitation. Moreover, the excitation conditions of the analytical line and the internal standard element line should match.

4.8 Niobium stock standard solution, 1 000 mg/l.

Weigh, to the nearest 0,000 1 g, 0,5 g of high purity niobium [min 99,95 % (mass fraction)] and dissolve in a mixture of 30 ml hydrofluoric acid (4.1) and 3 ml nitric acid (4.3). Cool and transfer the solution quantitatively to a calibrated 500 ml one-mark plastic volumetric flask. Dilute to the mark with water and mix. 1 ml of this solution contains 1 mg of Nb.

NOTE It is not permitted to use pre-prepared niobium standard solutions supplied by second parties.

4.9 Niobium standard solution, 100 mg/l.

Transfer, with a calibrated pipette, 25 ml of the niobium stock standard solution (4.8) into a calibrated 250 ml one-mark plastic volumetric flask. Add 2,5 ml of hydrofluoric acid (4.1). Dilute to the mark with water and mix. 1 ml of this solution contains 0,1 mg of Nb.

4.10 Niobium standard solution, 10 mg/l.

Transfer, with a calibrated pipette, 2,5 ml of the niobium stock standard solution (4.8) into a calibrated 250 ml one-mark plastic volumetric flask. Add 2,5 ml of hydrofluoric acid (4.1). Dilute to the mark with water and mix. 1 ml of this solution contains 0,01 mg of Nb.

4.11 Standard solutions of interfering and matrix elements.

Prepare standard solutions for each element above 1 % (mass fraction) in the test sample. Use pure elements or oxides with niobium contents less than 10 μ g/g (mass fraction). Commercial certified standard solutions can also be used if the niobium content is less than the value specified above.

NOTE If a large amount of an element is to be added (e.g. iron), it might be more advantageous to use the pure metal and weigh the correct amount (see 7.3 and 7.4). In this case, use the dissolution procedure described in 7.1.2.

5 Apparatus

As it, for obvious reasons, is impossible to use volumetric glassware in this application, the laboratory has to make sure that the plastic pipettes and flasks to be used are calibrated in accordance with ISO 648 or ISO 1042 as appropriate.

Ordinary laboratory apparatus and

5.1 Atomic emission spectrometer, equipped with an inductively coupled plasma (ICP) and a nebulization system resistant to hydrofluoric acid. RD PREVIEW

When a teflon nebulizer is used, it is recommended that a surface active agent should be added to improve wetting in the nebulizer and spray chamber. Modern nebulizers are, however, often manufactured in plastic materials with better wetting-characteristics than Teflon and can therefore (as is the case with sapphire nebulizers) be used without a surface active agent. Nebulizers are, however, often manufactured in plastic materials with better wetting-characteristics than Teflon and can therefore (as is the case with sapphire nebulizers) be used without a surface active agent. Nebulizers however, often manufactured in plastic materials with better wetting-characteristics than Teflon and can therefore (as is the case with sapphire nebulizers) be used without a surface active agent.

The ICP-ES spectrometer used will be satisfactory if, after optimising according to 7.2.1 to 7.2.4, it meets the performance criteria given in 5.1.2 to 5.1.4.

The spectrometer can be either the simultaneous or the sequential type. A sequential type can be used either with or without an internal standard. However, if a sequential spectrometer is to be used with an internal standard, it shall be fitted with an arrangement which allows for the simultaneous measurement of the internal standard line.

5.1.1 Analytical lines

This standard does not specify any particular emission line. It is mandatory that each laboratory carefully investigate the line/lines available on its own equipment to find the most suitable one regarding sensitivity and freedom from interferences.

In Table 1, however, two suggestions are given together with possible interferences. These lines have been carefully investigated (see Annex B).

The line for the internal standard element should be selected according to 4.7. It is, however, recommended to use Sc 363.07 nm. This line is interference free for the elements and concentrations given in Annex B.

Element	Wavelength nm	Possible interferences
Nb	309,41	V, Cr, Ni
Nb	316,34	Fe, Cr, V, W, Ti

Table 1 — Examples of analytical lines together with interfering elements

5.1.2 Minimum practical resolution of the spectrometer

Calculate the bandwidth, according to Clause A.1, for the wavelength used including the line for the internal standard. The bandwidth shall be less than 0,030 nm.

5.1.3 Minimum short-term precision

Calculate the short-term precision according to Clause A.2. The relative standard deviation shall not exceed 0,5 % of the mean absolute or ratioed intensities for concentrations 100 to 1 000 times the LOD (6.1.4) mg/l. For concentrations 10 to 100 times the LOD, the RSD shall not exceed 5 %.

5.1.4 Limit of Detection (LOD) and Limit of Quantification (LOQ)

Calculate the LOD and LOQ, according to Annex A, Clause A.3, for the analytical line used. The values shall be below the values in Table 2.

Table 2 — Limit of Detection (LOD) and Limit of Quantification (LOQ)	Table 2 — Limit of Detection	(LOD) and Limit of Quantification (L	OQ)
--	------------------------------	--------------------------------------	-----

Element	LOD mg/l	LOQ mg/l
Nb	0,05	0,25

5.2 Polytetrafluoroethylene (PTFE) beakers DARD PREVIEW

(standards.iteh.ai)

5.3 100 ml polypropylene volumetric flask

ISO 13899-2:2005

6 Sampling and samples 9088-4e62457fa4ct/iso-13899-2-2005

Sampling and preparation of the laboratory sample shall be carried out in accordance with ISO 14284 or appropriate national standards for steels.

7 Procedure

7.1 Preparation of test solution, T_n

7.1.1 Weigh, to the nearest 0,000 5 g, a test portion of the laboratory sample in accordance with Table 3, and transfer it to a PTFE beaker.

Expected content	Test portion
% (mass fraction)	g
0,005 to 0,5	0,5
0,5 to 5	0,25

Table	3 —	Test	portion
1 4 5 1 0	•		201001

7.1.2 Add 10 ml of HCl (4.2), 2 ml of HNO₃ (4.3) and 5 ml of HF (4.1). Heat to complete dissolution. Make sure that all deposits that may have formed on the walls of the beaker are washed down using a glass stick with a rubber head. Add 20 ml of fuming acid mixture (4.6) and heat until the perchloric acid starts to fume. Continue to fume for 2 to 3 min (the white smoke must be on the top of the PTFE beaker).

7.1.3 Cool the solution and add 10 ml of water to dissolve the salts. Some residues can remain undissolved. Add 2 ml of HF (4.1). Heat slowly for 20 min when the residues will dissolve completely.

7.1.4 Cool the solution to room temperature and transfer the solution quantitatively to a 100 ml volumetric polypropylene flask (5.3). If an internal standard is to be used, add 1 ml of the internal standard solution (4.7). It is strongly recommended that some kind of automatic system be used when adding the internal standard, since it is most important that the volume added is exactly the same for each flask.

7.1.5 Dilute to the mark with water and mix.

7.1.6 Filter all solutions through a medium paper filter. Discharge the first 2 to 3 ml.

7.2 Preparation for spectrometric measurements

7.2.1 Start the ICP and allow it to warm up according to the manufacturer's instructions before any measurement.

7.2.2 Optimize the instrument according to the manufacturer's instructions.

7.2.3 Prepare the software to measure the intensity, mean value and relative standard deviation of the lines chosen.

7.2.4 If an internal standard is to be used, prepare the software to calculate the ratio between analyte intensity and internal standard intensity. The intensity of the internal standard shall be measured simultaneously with the analyte intensity. NDARD PREVIEW

7.2.5 Check the instrument performance requirements given in 5.1.2 to 5.1.4.

(standards.iten.al)

7.3 Pre-analysis of the test solution

Prepare a calibration solution, $K_{0,5}^{rds}$ or K_5^{r} , corresponding to a niobium content of 0,5 or 5 % (mass fraction) depending on the expected content, and matrix-matched to the test solution. Prepare also a blank calibration solution, K_0 , in the same way as the calibration solution but leaving out niobium.

7.3.1 Add, using a pipette,

- 2,5 ml of the niobium stock standard solution (4.8) to a 100 ml volumetric polypropylene flask (5.3) marked $K_{0.5}$ (corresponds to a Nb content of 0,5 %), or
- 12,5 ml of the niobium stock standard solution (4.8) to a 100 ml volumetric flask (5.3) marked K_5 (corresponds to a Nb content of 5 %).

7.3.2 For all matrix elements with concentrations above 1 % in the unknown sample, add (using the standard solutions, 4.11) the same amount of the matrix elements (to the nearest percent) to the calibration samples $K_{0,5}$ or K_5 . Remember to calculate on the actual sample weight used (0,5 or 0,25 g). Also add internal standard (4.7) if this is to be used.

7.3.3 Add all matrix elements as in 7.3.2 to a second 100 ml volumetric polypropylene flask (5.3) marked K_0 . Also add internal standard (4.7) if this is to be used.

7.3.4 Add 20 ml of fuming acid mixture (4.6) to the two flasks, dilute with water and mix.

7.3.5 Measure the absolute or ratioed intensities for the solutions K_0 and $K_{0.5}$ or K_5 .

7.3.6 Measure the absolute or ratioed intensities for the test solution, T_{n} .

7.3.7 Calculate the approximate concentration in the test solution by interpolation between the absolute or ratioed intensities of the solutions K_0 and $K_{0.5}$ or K_5 .