
 

 

  

 

Reference number
ISO/IEC TR 10176:2003(E)

© ISO/IEC 2003
 

 

 

TECHNICAL 
REPORT 

ISO/IEC
TR

10176

Fourth edition
2003-04-15

 

Information technology — Guidelines for 
the preparation of programming language 
standards 

Technologies de l'information — Lignes directrices pour la préparation 
des normes des langages de programmation 

 iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

PDF disclaimer 
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but 
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In 
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat 
accepts no liability in this area. 

Adobe is a trademark of Adobe Systems Incorporated. 

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation 
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In 
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. 

 

©   ISO/IEC 2003 
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, 
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or 
ISO's member body in the country of the requester. 

ISO copyright office 
Case postale 56 • CH-1211 Geneva 20 
Tel.  + 41 22 749 01 11 
Fax  + 41 22 749 09 47 
E-mail  copyright@iso.org 
Web  www.iso.org 

Published in Switzerland 
 

ii  © ISO/IEC 2003 — All rights reserved
 

 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

© ISO/IEC 2003 — All rights reserved  iii
 

Contents Page 

Foreword............................................................................................................................................................ iv 
Introduction ........................................................................................................................................................ v 
1 Scope...................................................................................................................................................... 1 
2 Normative references ........................................................................................................................... 1 
3 Terms and definitions........................................................................................................................... 1 
4 Guidelines.............................................................................................................................................. 7 
4.1 Guidelines for the form and content of standards ............................................................................ 7 
4.1.1 Guideline: The general framework ...................................................................................................... 7 
4.1.2 Guideline: Definitions of syntax and semantics ................................................................................ 8 
4.1.3 Guidelines on the use of character sets............................................................................................. 8 
4.1.4 Guideline: Error detection requirements.......................................................................................... 14 
4.1.5 Guideline: Exception detection requirements ................................................................................. 17 
4.1.6 Guideline: Static detection of exceptions ........................................................................................ 19 
4.1.7 Guideline: Recovery from non-fatal errors and exceptions ........................................................... 20 
4.1.8 Guideline: Requirements on user documentation .......................................................................... 20 
4.1.9 Guideline: Provision of processor options ...................................................................................... 20 
4.1.10 Guideline: Processor-defined limits ................................................................................................. 22 
4.2 Guidelines on presentation................................................................................................................ 23 
4.2.1 Guideline: Terminology...................................................................................................................... 23 
4.2.2 Guideline: Presentation of source programs................................................................................... 24 
4.3 Guidelines on processor dependence.............................................................................................. 24 
4.3.1 Guideline: Completeness of definition ............................................................................................. 24 
4.3.2 Guideline: Optional language features ............................................................................................. 24 
4.3.3 Guideline: Management of optional language features .................................................................. 24 
4.3.4 Guideline: Syntax and semantics of optional language features .................................................. 25 
4.3.5 Guideline: Predefined keywords and identifiers ............................................................................. 25 
4.3.6 Guideline: Definition of optional features ........................................................................................ 25 
4.3.7 Guideline: Processor dependence in numerical processing ......................................................... 26 
4.4 Guidelines on conformity requirements........................................................................................... 26 
4.5 Guidelines on strategy ....................................................................................................................... 26 
4.5.1 Guideline: Secondary standards....................................................................................................... 26 
4.5.2 Guideline: Incremental standards ..................................................................................................... 26 
4.5.3 Guideline: Consistency of use of guidelines ................................................................................... 27 
4.5.4 Guideline: Revision compatibility ..................................................................................................... 27 
4.6 Guidelines on cross-language issues .............................................................................................. 29 
4.6.1 Guideline: Binding to functional standards ..................................................................................... 29 
4.6.2 Guideline: Facilitation of binding ...................................................................................................... 29 
4.6.3 Guideline: Conformity with multi-level functional standards......................................................... 30 
4.6.4 Guideline: Mixed language programming ........................................................................................ 30 
4.6.5 Guideline: Common elements ........................................................................................................... 30 
4.6.6 Guideline: Use of data dictionaries................................................................................................... 30 
4.7 Guidelines on Internationalization .................................................................................................... 30 
4.7.1 Guideline: Cultural convention set switching mechanism............................................................. 30 
4.7.2 Guideline: Cultural convention related functionality ...................................................................... 31 
Annex A (informative)  Recommended extended repertoire for user-defined identifiers .......................... 32 
 

 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

iv  © ISO/IEC 2003 — All rights reserved
 

Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are members of 
ISO or IEC participate in the development of International Standards through technical committees 
established by the respective organization to deal with particular fields of technical activity. ISO and IEC 
technical committees collaborate in fields of mutual interest. Other international organizations, governmental 
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information 
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 
an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report 
of one of the following types: 

— type 1, when the required support cannot be obtained for the publication of an International Standard, 
despite repeated efforts; 

— type 2, when the subject is still under technical development or where for any other reason there is the 
future but not immediate possibility of an agreement on an International Standard; 

— type 3, when the joint technical committee has collected data of a different kind from that which is 
normally published as an International Standard (“state of the art”, for example). 

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether 
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to 
be reviewed until the data they provide are considered to be no longer valid or useful. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 

ISO/IEC TR 10176, which is a Technical Report of type 3, was prepared by Joint Technical Committee 
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments 
and system software interfaces. 

This fourth edition cancels and replaces the third edition (ISO/IEC 10176:2001), which has been technically 
revised. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

© ISO/IEC 2003 — All rights reserved  v
 

Introduction 

Background: Over the last three decades (1966-2002), standards have been produced for a number of 
computer programming languages. Each has dealt with its own language in isolation, although to some extent 
the drafting committees have become more expert by learning from both the successes and the mistakes of 
their predecessors. 

The first edition of this Technical Report was produced during the 1980s to put together some of the 
experience that had been gained to that time, in a set of guidelines, designed to ease the task of drafting 
committees of programming language standards. This second edition enhances the guidelines to take into 
account subsequent experiences and developments in the areas of internationalization and character sets. 

This document is published as a Technical Report type 3 because the design of programming languages - 
and hence requirements relating to their standardization - is still evolving fairly rapidly, and because existing 
languages, both standardized and unstandardized, vary so greatly in their properties and styles that 
publication as a full standard, even as a standard set of guidelines, did not seem appropriate at this time. 

The need for guidelines: While each language, taken as a whole, is unique, there are many individual 
features that are common to many, or even to most of them. While standardization should not inhibit such 
diversity as is essential, both in the languages and in the form of their standards, unnecessary diversity is 
better avoided. Unnecessary diversity leads to unnecessary confusion, unnecessary retraining, unnecessary 
conversion or redevelopment, and unnecessary costs. The aim of the guidelines is therefore to help to 
achieve standardization across languages and across their standards. 

The existence of a guideline will often save a drafting committee from much discussion of detailed points all of 
which have been discussed previously for other languages. 

Furthermore the avoidance of needless diversity between languages makes it easier for programmers to 
switch between one and another. 

NOTE Diversity is a major problem because it uses up time and resources better devoted to the essential part, both 
by makers and users of standards. Building a language standard is very expensive in resources and far too much time and 
effort goes into “reinventing the wheel” and trying to solve again, from the beginning, the same problems that other 
committees have faced. 

However, a software writer faced with the task of building (say) a support environment (operating system facilities, utilities, 
etc.) for a number of different language processors is also faced with many problems from the eventual standards. Quite 
apart from the essential differences between the languages, there are to begin with the variations of layout, arrangement, 
terminology, metalanguages, etc. Much worse, there are the variations between requirements of basically the same kind, 
some substantial, some slight, some subtle - compounded by needless variations in the way they are specified. This 
represents an immense extra burden - as does the duplication in providing different support tools for different languages 
performing basically the same task. 

How to use this Technical Report: This Technical Report does not seek to legislate on how programming 
languages should be designed or standardized: it would be futile even to attempt that. The guidelines are, as 
their name implies, intended for guidance only. Nevertheless, drafting committees are strongly urged to 
examine them seriously, to consider each one with care, and to adopt its recommendation where practicable. 
The guidelines have been so written that it will be possible in most cases to determine, by examination, 
whether a given programming language standard has been produced in accordance with a given guideline, or 
otherwise. However, the conclusions to be drawn from such an assessment, and consequent action to be 
taken, are matters for individual users of this Technical Report and are beyond its scope. 

Reasons for not adopting any particular guideline should be documented and made available, (e.g. in an 
informative annex of the programming language standard). This and the reason therefore can be taken into 
account at future revisions of the programming language standard or this Technical Report. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

vi  © ISO/IEC 2003 — All rights reserved
 

Of course, care must naturally be taken when following these guidelines to do so in a way which does not 
conflict with the ISO/IEC Directives, or other rules of the standards body under whose direction the standard is 
being prepared. 

Further related guidelines: This Technical Report is concerned with the generality of programming 
languages and general issues concerning questions of standardization of programming languages, and is not 
claimed to be necessarily universally applicable to all languages in all circumstances. Particular languages or 
kinds of languages, or particular areas of concern, may need more detailed and more specific guidelines than 
would be appropriate for this Technical Report. At the time of publication, some specific areas are already the 
subject of more detailed guidelines, to be found in existing or forthcoming Technical Reports. Such Technical 
Reports may extend, interpret, or adapt the guidelines in this Technical Report to cover specific issues and 
areas of application. Users of this Technical Report are recommended to take such other guidelines into 
account, as well as those in this Technical Report, where the circumstances are appropriate. See, in particular, 
ISO/TR 9547 and ISO/IEC TR 10034. 

 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



TECHNICAL REPORT ISO/IEC TR 10176:2003(E)
 

© ISO/IEC 2003 — All rights reserved  1
 

Information technology — Guidelines for the preparation of 
programming language standards 

1 Scope 

This Technical Report presents a set of guidelines for producing a standard for a programming language. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange 

ISO/IEC 2022:1994, Information technology — Character code structure and extension techniques 

ISO/IEC 2382-15:1999, Information technology  — Vocabulary — Part 15: Programming languages 

ISO/IEC 4873:1991, Information technology — ISO 8-bit code for information interchange — Structure and 
rules for implementation 

ISO/IEC 6937:2001, Information technology — Coded graphic character set for text communication — Latin 
alphabet 

ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character sets — Part 1: 
Latin alphabet No. 1 

ISO/TR 9547:1988, Programming language processors — Test methods — Guidelines for their development 
and acceptability 

ISO/IEC TR 10034:1990, Guidelines for the preparation of conformity clauses in programming language 
standards 

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — 
Part 1: Architecture and Basic Multilingual Plane 

ISO/IEC TR 11017:1998, Information technology — Framework for internationalization 

ISO/IEC 11404:1996, Information technology — Programming languages, their environments and system 
software interfaces — Language-independent datatypes 

ISO/IEC 14977:1996, Information technology — Syntactic metalanguage — Extended BNF 

3 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

2  © ISO/IEC 2003 — All rights reserved
 

This clause contains terminology which is used in particular specialized senses in this Technical Report. It is 
not claimed that all language standards necessarily use the terminology in the senses defined here; where 
appropriate, the necessary interpretations and conversions would need to be carried out when applying these 
guidelines in a particular case. Also, not all language standards use the terminology of ISO/IEC 2382-15; the 
terminology defined here, itself divergent in some cases from that in ISO/IEC 2382-15, has been introduced to 
minimize confusion which might result from such difference. Some remarks are made below about particular 
divergences from ISO/IEC 2382-15, for further clarification. 

3.1 programming language processor (abbreviated where there is no ambiguity to processor) 
Denotes the entire computing system which enables the programming language user to translate and execute 
programs written in the language, in general consisting both of hardware and of the relevant associated 
software. 

NOTE 1 A “processor” in the sense of this Technical Report therefore consists of more than simply (say) a “compiler” 
or an “implementation” in conventional terminology; in general it consists of a package of facilities, of which a “compiler” in 
the conventional sense may be only one. There is also no implication that the processor consists of a monolithic entity, 
however constituted. For example, processor software may consist of a syntax checker, a code generator, a link-loader, 
and a run-time support package, each of which exists as a logically distinct entity. The “processor” in this case would be 
the assemblage of all of these and the associated hardware. Conformity to the standard would apply to the assemblage as 
a whole, not to individual parts of it. 

NOTE 2 In ISO/TR 9547 the term “processor” is used in a more restricted sense. For the purposes of ISO/TR 9547, a 
differentiation is necessary between “processor” and “configuration”; that distinction is not necessary in this Technical 
Report. Those using both Technical Reports will need to bear this difference in terminology in mind. See 3.3.4 for another 
instance of a difference in terminology, where a distinction which is not necessary in ISO/TR 9547 has to be made in this 
Technical Report. 

3.2 syntax and semantics 
Denote the grammatical rules of the language. The term syntax refers to the rules that determine whether a 
program text is well-formed. The syntactic rules need not be exclusively “context-free”, but must allow a 
processor to decide, solely by inspection of a program text, with a practicable amount of effort and within a 
practicable amount of time, whether that text conforms to the rules. An error (see 3.3.1) is a violation of the 
syntactic rules. 

The term semantics refers to the rules which determine the behaviour of processors when executing well-
formed programs. An exception (see 3.3.2) is a violation of a non-syntactic requirement on programs. 

NOTE In ISO/IEC 2382-15 the term static is defined (15.02.09) as “pertaining to properties that can be established 
before the execution of a program” and dynamic (15.02.10) as “pertaining to properties that can only be established 
during the execution of a program”. These therefore appear to be close to the terms “syntax” and “semantics” respectively 
as defined in this Technical Report. ISO/IEC 2382-15 does not define “syntax” or “semantics”, though these are terms very 
commonly used in the programming language community. 

Furthermore, the uses of “static” and “dynamic” (and other terms) in ISO/IEC 2382-15 seem designed for use within a 
single language rather than across all languages, but while that terminology can mostly be applied consistently within a 
single language, it becomes much harder to do so across the generality of languages, which is the need in this Technical 
Report. This problem is not totally absent with “syntax/semantics” but is much less acute. 

3.3 errors, exceptions, conditions 

3.3.1 
errors 
The incorrect program constructs which are statically determinable solely from inspection of the program text, 
without execution, and from knowledge of the language syntax. A fatal error is one from which recovery is not 
possible, i.e. it is not possible to proceed to (or continue with) program execution. A non-fatal error is one 
from which such recovery is possible. 

NOTE A fatal error may not necessarily preclude the processor from continuing to process the program, in ways 
which do not involve program execution (for example, further static analysis of the program text). 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

© ISO/IEC 2003 — All rights reserved  3
 

3.3.2 
exceptions 
The instances of incorrect program functioning which in general are determinable only dynamically, through 
execution of the program. A fatal exception is one from which recovery is not possible, i.e. it is not possible to 
continue with (or to proceed to) program execution. A non-fatal exception is one from which recovery is 
possible. 

NOTE 1 In case of doubt, “possible” within this section should be interpreted as “possible without violating definitions 
within or requirements of the standard”. For example, the hardware element of a language processor may have the 
technical capability of continuing program execution after division by zero, but in terms of a language standard which 
defines division by zero as a fatal exception, the consequences of such continued execution would not be meaningful. 

NOTE 2 See also 3.3.4. 

3.3.3 
conditions 
Occurrences during execution of the program which cause an interruption of normal processing when 
detected. A condition may be an exception, or may be some language-defined or user-defined occurrence, 
depending on the language. 

NOTE For example, reaching end-of-file on input may always be an exception in one language, may always be a 
condition in another, while in a third it may be a condition if action to be taken on detection is specified in the program, but 
an exception if its occurrence is not anticipated. 

3.3.4 
relationship to other terminology 
In ISO/TR 9547 the term “error” is used in a more general sense to encompass what this Technical Report 
terms “exceptions” as well as “errors”. For the purposes of ISO/TR 9547, the differentiation made here is not 
necessary. Those using both Technical Reports will need to bear this difference in terminology in mind. See 
Note 2 of 3.1 for another instance of a difference in terminology, where a distinction has to be made in 
ISO/TR 9547 which is not necessary in this Technical Report. 

ISO/IEC 2382-15 does not define “error” but does define “exception (in a programming language)” (15.06.12). 
The definition reads “A special situation which may arise during execution, which is considered abnormal, 
which may cause a deviation from the normal execution sequence, and for which facilities exist in the 
programming language to define, raise, recognize, ignore and handle it”. ON-conditions in PL/I and exceptions 
in Ada are cited as examples. 

The reason for not using this terminology in this Technical Report, which deals with the generality of existing 
and potential standardized languages rather than just a single one, is that it makes it difficult to distinguish (as 
this Technical Report needs to do) between “pure” exceptions, more general conditions, and processor 
options for exception handling which are built into the language (all in the senses defined in this Technical 
Report). It also does not aid making sufficient distinction between ON-conditions being enabled or disabled 
(globally or locally), nor whether the condition handler is the system default or provided by the programmer. 

3.4 processor dependence 
For the purposes of this Technical Report, the following definitions are assumed. 

If this Technical Report refers to a feature being left undefined in a standard (though referred to within the 
standard), this means that no requirement is specified concerning its provision and the effect of attempting to 
use the feature cannot be predicted. 

If this Technical Report refers to a feature being processor-dependent, this means that the standard requires 
the processor to supply the feature but that there are no further requirements upon how it is provided. 

If this Technical Report refers to a feature being processor-defined, this means that its definition is left 
processor-dependent by the standard, but that the definition shall be explicitly specified and made available to 
the user in some appropriate form (such as part of the documentation accompanying the processor, or 
through use of an environmental enquiry function). 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

4  © ISO/IEC 2003 — All rights reserved
 

NOTE 1 The term “feature” is used here to encompass both language features (syntactic elements a change to which 
would change the text of a program) and processor features (e.g. processor options, or accompanying documentation, a 
change to which would not change the text of a program). Examples of features which are commonly left undefined, 
processor-dependent or processor-defined are the collating sequence of the supported character set (a language feature) 
and processor action on detection of an exception (a processor feature). 

NOTE 2 In any particular instance the precise effect of the use of any of these terms may be affected by the nature of 
the feature concerned and the context in which the term is used. 

NOTE 3 None of the above terms specifically covers the case where reference to a feature is omitted altogether from 
the standard. While in general this might be regarded as “implicit undefined”, it is possible that an unmentioned feature 
might necessarily have to be supplied for the processor to be usable (and would hence be processor-dependent) and that 
some aspects of the feature might in turn have to be processor-defined for the feature to be usable. 

3.5 secondary, incremental and supplementary standards 

3.5.1 
secondary standards 
In this Technical Report, a secondary standard is one which requires strict conformity with another (“primary”) 
standard - or possibly more than one primary standard - but places further requirements on conforming 
products (e.g. in the context of this Technical Report, on language processors or programs). 

NOTE A possible secondary standard for conforming programs might specify additional requirements with respect to 
use of comments and indentation, provision of documentation, use of conventions for naming user-defined identifiers, etc. 

A possible secondary standard for conforming processors might specify additional requirements with respect to error and 
exception handling, range and accuracy of arithmetic, complexity of programs which can be processed, etc. 

3.5.2 
incremental standards 
In this Technical Report, an incremental standard adds to an existing standard without modifying its content. 
Its purpose is to supplement the coverage of the existing standard within its scope (e.g. language definition) 
rather than (as with a secondary standard, see 3.5.1) to add further requirements upon products conforming 
with an existing standard which are outside that scope. It is recognized that in some cases it might be 
desirable to produce a standard additional to an existing one which was both “incremental” (in terms of 
language functionality) and “secondary” (in terms of other requirements upon products). 

3.5.3 
supplementary standards 
In this Technical Report, a supplementary standard adds functionality to an existing standard without 
extending its range of syntactic constructs; such as by the binding of a language to a specific set of functions. 
Supplementary standards are expected to be expressed in terms of the base language which they supplement, 
but do not replace any elements of the primary standard. 

3.6 terms related to character and internationalization 

3.6.1 
octet 
An ordered sequence of eight bits considered as a unit. 

3.6.2 
byte 
An individually addressable unit of data storage used to store a character, portion of a character or other data. 

3.6.3 
character 
A member of a set of elements used for the organization, control, or representation of data. 

NOTE The definition above is that from the standard developed by ISO/IEC JTC 1/SC2. This ensures that the term 
“character” used in this TR is consistent with the coded character set standard. The composite sequence of 
ISO/IEC 10646 is not considered as a character. Each element of a composite sequence (as it is in ISO/IEC 10646) is 
considered as a “character” in this TR. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

© ISO/IEC 2003 — All rights reserved  5
 

3.6.4 
combining character 
A member of an identified subset of the coded character set of ISO/IEC 10646 intended for combination with 
the preceding non-combining graphic character, or with a sequence of combining characters preceded by a 
non-combining character. 

3.6.5 
composite sequence 
A sequence of graphic characters consisting of a non-combining character followed by one or more combining 
characters. 

NOTE 1 A graphic symbol for a composite sequence generally consists of the combination of the graphic symbols of 
each character in the sequence. 

NOTE 2 A composite sequence is not a character and therefore is not a member of the repertoire of ISO/IEC 10646. 

3.6.7 
coded character 
A character together with its coded representation. 

3.6.8 
basic character set 
A character set that is common across every execution environment of a programming language, e.g. The 
invariant set of ISO/IEC 646. 

3.6.9 
extended character set 
A character set that is used in an execution environment, e.g. ISO/IEC 10646-1. In most cases, the repertoire 
of the extended character set is larger than the basic character set. 

3.6.10 
character datatype 
Character datatype is a family of datatypes whose value spaces are character sets. 

NOTE The value space of the character datatype should be wide enough to represent every member of extended 
character set, if the repertoire list of characters to be stored in the character datatype is not specified explicitly. 

3.6.11 
octet datatype 
Octet datatype is the datatype of 8-bit codes, as used for character sets and private encodings. 

NOTE The value space of the octet datatype is wide enough to represent every member of basic character set, but 
may not be wide enough to every member of extended character sets. 

3.6.12 
octet string datatype 
Octet string datatype is the datatype of variable-length encoding using 8-bit codes. 

NOTE The octet string datatype may be used to represent a member of extended character sets. 

3.6.13 
multi-byte representation of character 
A coded character represented by using a sequence of bytes (one-octet byte, two-octet byte, or four-octet 
byte). 

NOTE 1 A character that is encoded by UTF-8 (UCS Transformation format) specified by a DAM of ISO/IEC 10646-1 
and stored in an octet-string datatype is an example of the multi-byte representation of a character. The size of a coded 
character encoded by UTF-8 is up to six octets, therefore it may occupy up to 6 one-octet bytes in the octet string datatype. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

6  © ISO/IEC 2003 — All rights reserved
 

NOTE 2 To handle the multi-byte representation of character correctly in an octet string datatype, the character 
boundary  needs to be distinguished from the octet(s) boundary. Otherwise a multi-byte representation of character may 
be bisected as the result of octet base string manipulation, thus becoming no longer a character. In following reference the 
multi-byte representation of a character will be abbreviated as multi-byte character. 

3.6.14 
multi-octet representation of character 
A coded character stored in a character datatype that size is equal to or larger than two octets with whose 
values are multiple octets. 

NOTE 1 A character that is encoded by UCS-2 stored in a character datatype is an example of the multi-octet 
representation of character. The size of a coded character encoded by UCS-2 is always two octets, therefore it can be 
considered as a coded character that is represented by single two-octet byte. 

NOTE 2 In following reference the multi-octet representation of a character will be abbreviated as the multi-octet 
character. 

NOTE 3 A coded character represented by UTF-16 is categorized in both multi-byte and multi-octet character, because 
the byte size of UTF-16 is two-octet, but a character may occupy 1 or 2 two-octet bytes in a octet string datatype. 

3.6.15 
collation 
The logical ordering of strings according to defined precedence rules. 

3.6.16 
cultural convention 
A convention of an information system which is functionally equivalent between cultures, but may differ in 
presentation, operation behaviour or degree of importance. 

NOTE Time zone, Summer time, Date and time format, Numeric format, Monetary format, Collation sequence, and 
Character classification, are examples of cultural convention. 

3.6.17 
cultural convention set 
A set of cultural conventions to be referred to by each programming language standard. 

3.6.18 
execution environment 
An environment where a program is executed. 

NOTE 1 An execution environment of program is not always the same as the compilation environment of the program. 

NOTE 2 Coded character sets supported by execution environment and input from the environment to program may 
vary from one to another. For example, ISO/IEC 8859-1 may be supported by an environment, and ISO/IEC 10646-1 may 
be supported by another environment. 

3.7 auxiliary verbs used in this TR 

3.7.1 
shall 
An indication of a requirement on programming language standard or processors. 

3.7.2 
should 
An indication of a recommendation to programming language standard or processors. 

3.7.3 
may 
An indication of an optional feature of programming language standard or processors. When this Technical 
Report provides a recommendation to the programming language standard that supports a specific optional 
feature, the auxiliary verb “may” is used in the sentence explaining the condition. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

© ISO/IEC 2003 — All rights reserved  7
 

4 Guidelines 

4.1 Guidelines for the form and content of standards 

4.1.1 Guideline: The general framework 

The standard should be designed so that it consists of at least the following elements: 

1) The specification of the syntax of the language, including rules for conformity of programs and 
processors. 

2) The specification of the semantics of the language, including rules for conformity of programs and 
processors. 

3) The specification of all further requirements on standard-conforming programs, and of rules for 
conformity. 

4) The specification of all further requirements on standard-conforming processors (such as error and 
exception detection, reporting and processing; provision of processor options to the user; 
documentation; validation; etc.), and of rules for conformity. 

5) One or more annexes containing an informal description of the language, a description of the 
metalanguage used in 1) and any formal method used in 2), a summary of the metalanguage 
definitions, a glossary, guidelines for programmers (on processor-dependent features, 
documentation available, desirable documentation of programs, etc.), and a cross-referenced index 
to the document. 

6) An annex containing a checklist of any implementation defined features. 

7) An annex containing guidelines for implementors, including short examples. 

8) An annex providing guidance to users of the standard on questions relating to the validation of 
conformity, with particular reference to ISO/IEC TR 10034, and any specific requirements relating to 
validation contained in 1) to 4) above. 

9) In the case where a language standard is a revision of an earlier standard, an annex containing a 
detailed and precise description of the areas of incompatibility between the old and the new standard. 

10) An annex which forms a tutorial commentary containing complete example programs that illustrate 
the use of the language. 

NOTE 1 The objective of this guideline is to provide a framework for use by drafting committees when producing 
standards documents. This framework ensures that users of the standard, whether programmers, implementors or testers, 
will find in the standards document the things that they are looking for; in addition, it provides drafting committees with a 
basis for organizing their work. 

NOTE 2 The elements referred to above are concerned only with the technical content of the standard, and are to be 
regarded as logical elements of that content rather than necessarily physical elements (see note 4 below). 

NOTE 3 It is to be made clear that the annexes referred to in elements 5) to 10) above are informative annexes (i.e. 
descriptive or explanatory only), and not normative, i.e. do not qualify or amend the specific requirements of the standard 
given in elements 1), 2), 3) and 4). It should be explicitly stated that, in any case of ambiguity or conflict, it is the standard 
as specified in elements 1), 2), 3) and 4) that is definitive. Note that, if a definition (as opposed to a description) of any 
formal method used in elements 1) and 2) cannot be established by reference, then the standard may need to incorporate 
that definition, insofar as is allowed by the rules of the responsible standards body (see also 4.1.2). 

NOTE 4 Given the requirements of note 3 above, a drafting committee has the right to interleave the various elements 
of the standard it is producing if it feels that this has advantages of clarity and readability, provided that precision is not 
compromised thereby, and that the distinction between the normative (specification) elements and the informative 
(informal descriptive) elements is everywhere made clear. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

8  © ISO/IEC 2003 — All rights reserved
 

NOTE 5 Element 9) will be empty if the standard is not a revision of an earlier standard. No specific guidelines or 
recommendations are included in this Technical Report concerning requirements on programs other than conformity with 
the syntactic and semantic rules of the language, and if this is the case in a standard, element 3) will be empty; however, it 
is recommended that in such a case an explicit statement be included that the only rules for conformity of programs are 
those for conformity with the language definition. It is recommended that none of the other elements should be left empty. 

4.1.2 Guideline: Definitions of syntax and semantics 

Consideration should be given to the use of a syntactic metalanguage for the formal definition of the syntax of 
the language, and the current “state of the art” in formal definition of semantics should be investigated, to 
determine whether the use of a formal method in the standard is feasible; the current policies on the use of 
formal methods within the standards body responsible for the standard should also be taken into account. 

NOTE 1 Traditionally some language standards have not used a full metalanguage (with production rules) for defining 
language syntax; some have used a metalanguage for only part of the syntax, leaving the remainder for natural-language 
explanation; some have used notation which is not amenable to automatic processing. The advantages of a true syntactic 
metalanguage are given in the introduction to ISO/IEC 14977:1996. The main ones can be summarized as conciseness, 
precision and elimination of ambiguity, and suitability for automatic processing for purposes like producing tools such as 
syntax analyzers and syntax-directed editors. 

NOTE 2 At the time of publication of this Technical Report, formal semantic definition methods suitable for 
programming languages form an active research area, making it impractical to provide any definite guidelines concerning 
whether to adopt a particular method, or any method at all; hence the recommendation to drafting committees to look at 
the position current when they begin work on their standard. 

NOTE 3 One of the purposes of including element 5) in 4.1.1 is to ensure that the standard as a whole is accessible to 
non-specialist readers while still providing the exact definitions required by those who are to implement the language 
processors. 

NOTE 4 Any formal method used may be specified by reference to an external standard or other definitive document, 
or may need to be specified in the standard itself (e.g. an annex providing a complete definition). In either case an informal 
description of the formal method should be included [element 5) of 4.1.1] so that for many purposes the standard can be 
read as a self-contained document even by those unfamiliar with the particular formal method concerned. As this guideline 
itself indicates, in deciding on matters of this kind, the current policies governing use of formal methods will need to be 
observed. 

4.1.3 Guidelines on the use of character sets 

The standard should ensure that it is possible within the language to support the handling of a wide range of 
character sets, including multi-octet character sets, e.g. ISO/IEC 10646-1, and non-English single octet 
character sets, e.g. ISO/IEC 8859-1. 

NOTE 1 For some applications, and for some classes of users for all applications, it is vital for the language to have the 
ability to accept and manipulate data from character sets other than the minimal character set needed for the basic 
purpose of specifying programs. For some users this need will be greater than the need for international interchange. An 
important task for any language standards committee is to ensure that it is possible for each of these needs to be met in a 
standard-conforming way. 

NOTE 2 Some programs will require both the ability to manipulate multi-octet and multi-byte characters and the 
capability of international interchange. This may imply two or more alternative representations of the same “character” 
(data object), one of which will be a representation (for interchange purposes) in the minimal character set defined in 
4.1.3.1.1. 

NOTE 3 In general it should be possible to use non-English single-octet, multi-octet and multi-byte coded character 
sets in program text, character literals, comment, and data without recourse to the use of processors which are not 
standard-conforming. Programs using such characters in program text, literals or comments may not be standard-
conforming and in general will be less portable internationally than those using only the minimal character set, but may still 
be portable within the applications community for those programs. Defined mappings from other character sets to the 
minimal character set of the language, and the presence of suitable processor options, are likely to maximize benefits and 
use-ability for differing requirements. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003



ISO/IEC TR 10176:2003(E) 

© ISO/IEC 2003 — All rights reserved  9
 

4.1.3.1 Guidelines on character sets used in program text 

The guidelines in this clause covers the considerations on the character sets used in programming language 
source code, i.e. characters used for syntax of programming language, user-defined identifier, character literal, 
and comments. 

4.1.3.1.1 Guideline: Character sets used for program text 

As far as possible, the language should be defined in terms only of the characters included within 
ISO/IEC 646, avoiding the use of any that are in national use positions. If any symbols are used which are not 
included within ISO/IEC 646 or are in national use positions, an alternative representation for all such symbols 
should be specified. A conforming processor should be required to be capable of accepting a program 
represented using only this minimal character set. Great care should be taken in specifying how “non-printing” 
characters are to be handled, i.e. those characters that correspond to integer values 0 to 32 inclusive and 127, 
i.e. null (0/0) to space (2/0) and delete (7/15), in case of ISO/IEC 646 coded character set. 

The guideline relates to the need for international interchange of programs, and hence is based on the 
principle of using a minimal set of characters which can be expected to be common to all systems likely to use 
the programs. In general this guideline is based on the default assumption that the form of representation of 
the program is not critical for the application concerned. In some cases, however (such as a program to 
convert text from one alphabet to another), interchange cannot be general but limited to processors capable of 
handling larger character sets. The guideline is based on the principle that standards should ensure that 
interchange of programs without such application dependence will be generally possible. 

NOTE 1 The motivation here is to provide a common basis for representing programs, which does not exist with 
current (published up to 1998) standards. The characters that are available in all national variants of ISO/IEC 646 cannot 
represent programs in many programming languages in a way that is acceptable to programmers who are familiar with the 
International Reference Version of ISO/IEC 646 that is equivalent with the U.S. national variant (usually referred to by its 
acronym “ASCII”). In particular, square brackets, curly brackets and vertical line are unavailable. 

Further, the characters that are available in the International Reference Version of ISO/IEC 646 cannot represent 
programs in many programming languages in a way that is acceptable to programmers who are familiar with a particular 
national variant of ISO/IEC 646. For example, the pound symbol may not be available. The characters that are available in 
ISO/IEC 646 IRV (ASCII) cannot represent programs in many programming languages in a way that is acceptable to 
programmers because their terminals support some other national variant of ISO/IEC 646. 

Consideration needs also to be given to the use of upper and lower case (roman) letters. If only one case is required, it 
should be made clear whether the other case is regarded as an alternative representation (so that, for example, TIME, 
time, Time, tImE are regarded as identical elements) or its use is disallowed in a standard-conforming program. Where 
both cases are required or allowed, the rules governing their use should be as simple as possible, and exactly and 
completely specified. 

Of the non-printing characters, nearly all languages allow space (2/0), and carriage return (0/13) line feed (0/10) as a pair, 
though they differ as to whether these characters are meaningful or ignored. How carriage return without line feed (or vice 
versa) is to be treated needs consideration, as do constructions such as carriage return, carriage return, line feed. If 
characters are disallowed that do not show themselves on a printed representation, the undesirable situation may arise 
where a program may be incorrect though its printout shows no fault. If a tabulation character (0/9) is disallowed, this can 
cause trouble, since it appears to be merely a sequence of spaces; if allowed, the effect on languages such as FORTRAN, 
having a given length of line, has to be considered. 

NOTE 2 The characters that are available in the eight-bit coded character sets ISO/IEC 4873 with ISO/IEC 8859-1, or 
ISO/IEC 6937-2, would be sufficient to represent programs in a way that, in the Western European and American cultures, 
looks familiar to most (but not APL) programmers. 

NOTE 3 The character sets that are available in the multi-octet coded character set of ISO/IEC 10646-1 would be 
sufficient to represent programs in a way that looks familiar to most programmers from most cultures. However, in 1998, 
the standard is not yet widely supported on printers and display terminals. 

NOTE 4 For advice on character set matters, committees should consult the ISO/IEC JTC 1 subcommittee for 
character coding. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10176:2003
https://standards.iteh.ai/catalog/standards/sist/7f5ba077-6626-4c9c-a9fd-

bbf07484795d/iso-iec-tr-10176-2003


	HŠq\}ó�R¡º_ü�y§F(ƒäqÀÎ·É~C»{WTÛ×ŒwˆÔÓ�ñ-?�ý˛´!2IP�ÙÖz_"¡4ﬁâz¼`��þe�J¾�Jâ€Ðþ´²�³
…DHäNsûñýw¹~

