

Designation: D6975 - 04

Standard Test Method for Cummins M11 EGR Test¹

This standard is issued under the fixed designation D6975; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method is commonly referred to as the Cummins M11 Exhaust Gas Recirculation Test (EGR). The test method defines a heavy-duty diesel engine test procedure conducted under high soot conditions to evaluate oil performance with regard to valve train wear, sludge deposits, and oil filter plugging² in an EGR environment.
- 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Annex A1 for general safety precautions.

1.4 Table of Contents:

1.4 Table of Contents.	
Scope	1
Referenced Documents	2
Terminology	()3
Summary of Test Method	4
Significance and Use	5
Apparatus	6
Test Engine Configuration	6.1 ASTV
Test Engine	6.1.1
Oil Heat Exchanger, Adapter Blocks, and /astm/Ub.	23 6.1.2 c-855
Block Off Plate	
Oil Filter Head Modification	6.1.3
Oil Pan Modification	6.1.4
Engine Control Module	6.1.5
Engine Position Sensor	6.1.6
Air Compressor and Fuel Pump	6.1.7
Test Stand Configuration	6.2
Engine Mounting	6.2.1
Intake Air System	6.2.2
Aftercooler	6.2.3
Exhaust System	6.2.4
Exhaust Gas Recirculation System	6.2.5

¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.B0 on Automotive Lubricants.

Fuel Supply	6.2.6
Coolant System	6.2.7
Pressurized Oil Fill System	6.2.8
External Oil System	6.2.9
Crankcase Aspiration	6.2.10
Blowby Rate	6.2.11
System Time Responses	6.3
Oil Sample Containers	6.4
Mass Balance	6.5
Engine and Cleaning Fluids	7
	-
Test Oil	7.1
Test Fuel	7.2
Engine Coolant	7.3
Solvent	7.4
Preparation of Apparatus	8
Cleaning of Parts	8.1
General	8.1.1
Engine Block	8.1.2
Cylinder Head	8.1.3
Rocker Cover and Oil Pan	8.1.4
External Oil System	8.1.5
Crosshead Cleaning and Measurement	8.1.6
Rod Bearing Cleaning and Measurement	8.1.7
Ring Cleaning and Measurement	8.1.8
Injector Adjusting Screw Cleaning and Measurement	8.1.9
Engine Assembly	8.2
General	8.2.1
	8.2.2
Parts Reuse and Replacement	
Build-Up Oil	8.2.3
Coolant Thermostat	8.2.4
Oil Thermostat	8.2.5
-aFuel Injectors 9 bc 1 6 ff/astm-d6975-04	8.2.6
New Parts	8.2.7
Operational Measurements	8.3
Units and Formats	8.3.1
Instrumentation Calibration	8.3.2
Temperatures	8.3.3
Pressures	8.3.4
Flow Rates	8.3.5
Intake and Exhaust CO ₂ Measurement	8.3.6
Engine/Stand Calibration and Non-Reference Oil Tests	9
General	9.1
New Test Stand	9.2
New Test Stand Calibration	9.2.1
Stand Calibration Period	9.3
Stand Modification and Calibration Status	9.4
Test Numbering System	9.5
General	9.5.1
Reference Oil Tests	9.5.2
Non-Reference Oil Tests	9.5.3
Reference Oil Test Acceptance	9.6
Unacceptable Reference Oil Test	9.7
Reference Oil Accountability	9.8
Non-Reference Oil Tests	9.9
Last Start Date	9.9.2
Test Procedure	10
Engine Installation and Stand Connections	10.1

10.2

Coolant System Fill

Current edition approved Nov. 1, 2004. Published November 2004. Originally approved in 2003. Last previous edition approved in 2003 as D6975–03. DOI: 10.1520/D6975-04.

² The ASTM Test Monitoring Center will update changes in this test method by means of Information Letters. Information letters may be obtained from the ASTM Test Monitoring Center, 6555 Penn Avenue, Pittsburgh, PA 15206-4489, Attention: Administrator. This edition incorporates revisions contained in all information letters through 03-1.

Oil Fill for Break-in	10.3	D287 Test Method
Engine Build Committed	10.3.3	Petroleum Produc
Fuel Samples	10.4	D445 Test Method
Engine Warm-up	10.5	
Shutdown During Warm-up	10.5.1	and Opaque Liqui
Engine Break-in	10.6	ity)
Shutdown and Maintenance	10.7	D482 Test Method
Normal Shutdown Emergency Shutdown	10.7.1 10.7.2	D524 Test Method
Maintenance	10.7.2	Petroleum Produc
Downtime	10.7.4	
300-h Test Procedure	10.8	D613 Test Method
Oil Fill for Test	10.8.2	D664 Test Method
Operating Conditions	10.8.4	by Potentiometric
Injection Timing Change	10.8.5	D976 Test Method
Mass % Soot Validity	10.8.6	Fuels
Test Timer Operational Data Acquisition	10.8.7 10.8.8	
Oil Purge, Sample and Addition	10.8.9	D1319 Test Metho
End of Test (EOT)	10.9	Petroleum Produc
Engine Disassembly	10.9.4	D2274 Test Metho
Calculations, Ratings, and Test Validity	11	Fuel Oil (Acceler
Crosshead Mass Loss	11.1	D2500 Test Method
Injector Adjusting Screw Mass Loss	11.2	
Rod Bearing Mass Loss	11.3	D2622 Test Metho
Ring Mass Loss	11.4	Wavelength Dispe
Sludge Ratings Piston Ratings	11.5 11.6	D2709 Test Metho
Oil Filter Plugging	11.7	Distillate Fuels by
Oil Analyses	11.8	D2896 Test Metho
Oil Consumption	11.9	
Fuel Analyses	11.10	ucts by Potention
Assessment of Operational Validity	11.11	D4052 Test Method
Assessment of Test Interpretability	11.12	Gravity of Liquid
Test Report	1 1 12 11 0 1 21	D4485 Specificatio
Precision and Bias	13	
Keywords Annexes	g.//stand	D4737 Test Metho
Safety Precautions	Annex A1	Variable Equation
Intake Air Aftercooler	Annex A2	D4739 Test Metho
Engine Build Parts Kit	Annex A3	Potentiometric Hy
Sensor Locations and Special Hardware	Annex A4	D5185 Test Metho
External Oil System	Annex A5	
Fuel Specification	Annex A6	ments, Wear Meta
Cummins Service Publications	Annex A7	975_0/ing Oils and Dete
Specified Units and Formats	Annex A8	Oils by Inductive
Report Forms and Data Dictionary and Sasting Sludge Rating Worksheets	Annex A9 Se_40 Annex A10	Spectrometry (IC)
Piston Rating Locations	Annex A11	D5302 Test Metho
Oil Analyses	Annex A12	
Oil Filter Plugging	Annex A13	Oils for Inhibition
Determination of Operational Validity	Annex A14	Spark-Ignition In
Exhaust CO ₂ Sampling Probe	Annex A15	Gasoline and Op-
Appendix		Duty Conditions ⁴
Typical System Configurations	Appendix X1	D5844 Test Metho
2. Referenced Documents		Oils for Inhibition
2.1 ASTM Standards: ³		D5967 Test Method
D86 Test Method for Distillation of P	atrolaum Products at	T-8 Diesel Engine
	cubicum floducts at	D6483 Test Method
Atmospheric Pressure		

Atmospheric Pressure

D92 Test Method for Flash and Fire Points by Cleveland Open Cup Tester

D97 Test Method for Pour Point of Petroleum Products

D129 Test Method for Sulfur in Petroleum Products (General Bomb Method)

D130 Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test

d for Kinematic Viscosity of Transparent uids (and Calculation of Dynamic Viscos-

d for Ash from Petroleum Products

d for Ramsbottom Carbon Residue of

d for Cetane Number of Diesel Fuel Oil

d for Acid Number of Petroleum Products c Titration

d for Calculated Cetane Index of Distillate

nod for Hydrocarbon Types in Liquid cts by Fluorescent Indicator Adsorption

od for Oxidation Stability of Distillate erated Method)

od for Cloud Point of Petroleum Products od for Sulfur in Petroleum Products by persive X-ray Fluorescence Spectrometry

od for Water and Sediment in Middle by Centrifuge

od for Base Number of Petroleum Prodmetric Perchloric Acid Titration

od for Density, Relative Density, and API ds by Digital Density Meter

on for Performance of Engine Oils

od for Calculated Cetane Index by Four

od for Base Number Determination by lydrochloric Acid Titration

nod for Determination of Additive Eletals, and Contaminants in Used Lubricattermination of Selected Elements in Base vely Coupled Plasma Atomic Emission CP-AES)

od for Evaluation of Automotive Engine on of Deposit Formation and Wear in a nternal Combustion Engine Fueled with perated Under Low-Temperature, Light-

od for Evaluation of Automotive Engine on of Rusting (Sequence IID)⁴

od for Evaluation of Diesel Engine Oils in

D6483 Test Method for Evaluation of Diesel Engine Oils in T-9 Diesel Engine⁴

D6557 Test Method for Evaluation of Rust Preventive Characteristics of Automotive Engine Oils

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E344 Terminology Relating to Thermometry and Hydrometry

D207 Test Moth d for API Gravity of Crude Petroleum and icts (Hydrometer Method)

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Withdrawn. The last approved version of this historical standard is referenced on www.astm.org.

2.2 Coordinating Research Council (CRC):⁵

CRC Manual No. 20

2.3 National Archives and Records Administration:⁶

Code of Federal Regulations Title 40 Part 86.310-79

3. Terminology

- 3.1 Definitions:
- 3.1.1 *blind reference oil*, *n*—a reference oil, the identity of which is unknown by the test facility.

 D5844
- 3.1.2 *blowby*, *n*—*in internal combustion engines*, the combustion products and unburned air-and-fuel mixture that enter the crankcase.

 D5302
- 3.1.3 *calibrate*, *v*—to determine the indication or output of a measuring device with respect to that of a standard. **E344**
- 3.1.4 heavy-duty, adj—in internal combustion engine operation, characterized by average speeds, power output, and internal temperatures that are close to the potential maximum.

D448:

- 3.1.5 heavy-duty engine, adj—in internal combustion engines, one that is designed to allow operation continuously at or close to its peak output.

 D4485
- 3.1.6 *non-reference oil*, *n*—any oil other than a reference oil, such as a research formulation, commercial oil, or candidate oil.

 D5844
- 3.1.7 non-standard test, n—a test that is not conducted in conformance with the requirements in the standard test method; such as running in a non-calibrated test stand or using different test equipment, applying different equipment assembly procedures, or using modified operating conditions.

D5844

- 3.1.8 *reference oil*, *n*—an oil of known performance characteristics used as a basis for comparison.

 D4485
- 3.1.9 sludge, n—in internal combustion engines, a deposit, principally composed of insoluble resins and oxidation products from fuel combustion and the lubricant, that does not drain from engine parts but can be removed by wiping with a cloth.

D5302

- 3.1.10 *test oil*, *n*—any oil subjected to evaluation in an established procedure.

 D6557
- 3.1.11 *wear*, *n*—the loss of material from, or relocation of material on, a surface. **D5302**
- 3.1.11.1 *Discussion*—Wear generally occurs between two surfaces moving relative to each other, and is the result of mechanical or chemical action or by a combination of mechanical and chemical actions.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *crosshead*, *n*—an overhead component, located between the rocker arm and each intake valve and exhaust valve pair, that transfers rocker arm travel to the opening and closing of each valve pair.
- 3.2.1.1 *Discussion*—Each cylinder has two crossheads, one for each pair of intake valves and exhaust valves.
- ⁵ Available from the Coordinating Research Council, Inc., 219 Perimeter Parkway, Atlanta, GA 30346.
- ⁶ Available from Superintendent of Documents, Attn: New Orders, P.O. Box 371954, Pittsburgh, PA 15250-7954.

- 3.2.2 *de-rate protocols*, *n*—protocols in the engine control module that cause the engine to reduce power output when certain operating parameters are exceeded.
- 3.2.3 exhaust gas recirculation (EGR), n—a method by which a portion of the engine exhaust is returned to the combustion chambers through the intake system.
- 3.2.4 *overhead*, *n*—*in internal combustion engines*, the components of the valve train located in or above the cylinder head.
- 3.2.5 *overfuel*, *v*—to cause the fuel flow to exceed the standard production setting.
- 3.2.6 valve train, n—in internal combustion engines, the series of components, such as valves, crossheads, rocker arms, push rods, and camshaft, that open and close the intake and exhaust valves.

4. Summary of Test Method

- 4.1 This test method uses a Cummins M11 400 diesel engine with a specially modified engine block. Test operation includes a 25-min warm-up, a 2-h break-in, and 300 h in six 50-h stages. During stages A, C, and E, the engine is operated with retarded fuel injection timing and is overfueled to generate excess soot. During stages B, D, and F, the engine is operated at conditions to induce valve train wear.
- 4.2 Prior to each test, the engine is cleaned and assembled with new cylinder liners, pistons, piston rings, and overhead valve train components. All aspects of the assembly are specified.
- 4.3 A forced oil drain, an oil sample, and an oil addition, equivalent to an oil consumption of 0.23 g/kW-h, is performed at the end of each 25-h period.
- 4.4 The test stand is equipped with the appropriate instrumentation to control engine speed, fuel flow, and other operating parameters.
- 4.5 Oil performance is determined by assessing crosshead wear at 8.5 mass % soot, sludge deposits, and oil filter plugging.

5. Significance and Use

- 5.1 This test method was developed to assess the performance of an engine oil to control engine wear and deposits under heavy-duty operating conditions selected to accelerate soot generation, valve train wear, and deposit formation in a turbocharged, aftercooled four-stroke-cycle diesel engine equipped with exhaust gas recirculation hardware.
- 5.2 This test method may be used for engine oil specification acceptance when all details of this test method are in compliance. Applicable engine oil service categories are included in Specification D4485.
- 5.3 The design of the engine used in this test method is representative of many, but not all, modern diesel engines. This factor, along with the accelerated operating conditions, needs to be considered when extrapolating test results.

6. Apparatus

- 6.1 Test Engine Configuration:
- 6.1.1 *Test Engine*—The Cummins M11 400 is an in-line six-cylinder heavy-duty diesel engine with 11 L of displacement and is turbocharged and aftercooled. The engine has an

TABLE 1 Maximum Allowable System Time Responses

Measurement	Time Response (s)
Speed	2.0
Temperature	3.0
Pressure	3.0
Flow	To be determined

TABLE 2 Warm-up Conditions

Parameter	Unit			Stage		
	Onit -	Α	В	С	D	E
Stage Length	min	5	5	5	5	5
Speed	r/min	700	1200	1600	1600	1600
Torque	Nom	135	270	540	1085	1470
Coolant Out Temperature ^A	°C	105	105	105	105	105
Oil Gallery Temperature ^A	°C	130	130	130	130	130
Intake Manifold Temperature ^A	°C	70	70	70	70	70

^A Maximum.

TABLE 3 Break-in Conditions

Parameter	Unit	Specification
Stage Length	min	120
Speed	r/min	1600 ± 5 (target)
Torque ^A	Nom	1930
Fuel Flow	kg/h	$64.4 \pm 0.9 \text{ (target)}$
Coolant Out Temperature	°Č	65.5
Fuel In Temperature	°C	40 ± 2
Oil Gallery Temperature	°C	115.5
Turbo Inlet Air Temperature	°C	record
Intake Manifold Temperature	°C	65.5 (target)
Oil Gallery Pressure	kPa	record
Oil Filter Delta Pressure	kPa	record
Intake Manifold Pressure	kPa abs.	≤ 320
Exhaust Pressure	kPa abs.	107 ± 1
Crankcase Pressure	kPa	record
Inlet Air Pressure	kPa abs.	record
Coolant System Pressure	kPa	103 ± 4

^A At standard atmospheric temperature and pressure

TABLE 4 Normal Shutdown Conditions

Parameter	Unit	Stage		
Faiametei	Offic	В А	Idle	
Stage Length	min	5	5	5
Speed	r/min	1200	700	700
Torque	N⋅m	270	135	<40
Coolant Out Temperature	°C	105 max	105 max	105 max
Intake Manifold Temperature	°C	70 max	70 max	70 max
Oil Gallery Temperature	°C	130 max	130 max	30 max

overhead valve configuration and EGR hardware. It features a 1994 emissions configuration with electronic control of fuel metering and fuel injection timing. Obtain the test engine, the engine build parts kit, and non-kit parts from the central parts distributor (CPD).^{7,8} The components of the engine build parts kit are shown in Table A3.1. Non-kit parts are shown in Table A3.2.

6.1.2 Oil Heat Exchanger, Adapter Blocks, and Block-Off Plate—The oil heat exchanger is relocated from the stock position with the use of adapter blocks as shown in Fig. A4.1.8.9 Install an oil cooler block-off plate on the back of the coolant thermostat housing (Fig. A4.1). Control the oil temperature by directing engine coolant through the oil heat exchanger (Fig. A4.2).

6.1.3 *Oil Filter Head Modification*—Modify the oil filter head by plugging the filter bypass return to sump line and the engine oil thermostat (Fig. A4.8). Block the thermostat passage to route all of the engine oil into the oil cooler.

6.1.4 *Oil Pan Modification*—Modify the oil pan as shown in Fig. A4.3.^{8.9}

6.1.5 Engine Control Module (ECM)—Obtain the ECM from the CPD.^{7,8} The ECM programming has been modified to provide overfueling and retarded injection timing to increase soot generation and overhead wear. The de-rate protocols have been disabled. However the de-rate messages will still be displayed when using Cummins electronic service tools.

6.1.6 Engine Position Sensor—The engine position sensor has two measurement coils. Disable the secondary coil by cutting the two outside wires colored red and black. The red and black wires are labeled A and D, respectively, on the engine position sensor plug (Fig. A4.15).

6.1.7 Air Compressor and Fuel Pump—The enginemounted air compressor is not used for this test method. Remove the air compressor and install the fuel injection pump in its place (Fig. A4.4). The fuel injection pump is driven with Cummins coupling P/N 208755. 8.10

6.2 Test Stand Configuration:

6.2.1 *Engine Mounting*—Install the engine so that it is upright and the crankshaft is horizontal.

6.2.1.1 The engine mounting hardware should be configured to minimize block distortion when the engine is fastened to the mounts. Excessive block distortion may influence test results.

6.2.2 *Intake Air System*—With the exception of the air filter and the intake air tube, the intake air system is not specified. A typical configuration is shown in Fig. X1.1. The air filter shall have a minimum initial efficiency rating of 99.2 %. Install the intake air tube (Fig. A4.5) at the intake of the turbocharger compressor. To control intake manifold pressure, a restriction plate or valve may be used after the aftercooler and before the inlet air tubing. The system shall allow control of applicable parameters listed in Table 5.

Note 1—Difficulty in achieving or maintaining intake manifold pressure or intake manifold temperature, or both, may be indicative of insufficient or excessive restriction.

6.2.3 *Aftercooler*—Use a Modine aftercooler for aftercooling. Instructions for obtaining the correct aftercooler are listed in A2.1.

6.2.4 Exhaust System—Install the exhaust tube (Fig. A4.6) at the discharge flange of the turbocharger turbine housing. The piping downstream of the exhaust tube is not specified. A method to control exhaust pressure is required.

⁷ The sole source of supply of the parts known to the committee at this time is Test Engineering Inc., 12758 Cimmaron Path, Suite 102, San Antonio, TX 78249-3417

⁸ If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, ¹ which you may attend.

⁹ The sole source of supply of the apparatus known to the committee at this time is Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228.

¹⁰ Available from a Cummins parts distributor.